145 research outputs found

    Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure

    Get PDF
    Heart failure (HF) remains the most common cause of death and disability, and a major economic burden, in industrialized nations. Physiological, pharmacological, and clinical studies have demonstrated that activation of the renin-angiotensin system is a key mediator of HF progression. Angiotensin-converting enzyme 2 (ACE2), a homolog of ACE, is a monocarboxypeptidase that converts angiotensin II into angiotensin 1-7 (Ang 1-7) which, by virtue of its actions on the Mas receptor, opposes the molecular and cellular effects of angiotensin II. ACE2 is widely expressed in cardiomyocytes, cardiofibroblasts, and coronary endothelial cells. Recent preclinical translational studies confirmed a critical counter-regulatory role of ACE2/Ang 1-7 axis on the activated renin-angiotensin system that results in HF with preserved ejection fraction. Although loss of ACE2 enhances susceptibility to HF, increasing ACE2 level prevents and reverses the HF phenotype. ACE2 and Ang 1-7 have emerged as a key protective pathway against HF with reduced and preserved ejection fraction. Recombinant human ACE2 has been tested in phase I and II clinical trials without adverse effects while lowering and increasing plasma angiotensin II and Ang 1-7 levels, respectively. This review discusses the transcriptional and post-transcriptional regulation of ACE2 and the role of the ACE2/Ang 1-7 axis in cardiac physiology and in the pathophysiology of HF. The pharmacological and therapeutic potential of enhancing ACE2/Ang 1-7 action as a novel therapy for HF is highlighted

    Targeting the ACE2 and Apelin Pathways Are Novel Therapies for Heart Failure: Opportunities and Challenges

    Get PDF
    Angiotensin-converting enzyme 2 (ACE2)/Ang II/Ang 1–7 and the apelin/APJ are two important peptide systems which exert diverse effects on the cardiovascular system. ACE2 is a key negative regulator of the renin-angiotensin system (RAS) where it metabolizes angiotensin (Ang) II into Ang 1–7, an endogenous antagonist of Ang II. Both the prolonged activation of RAS and the loss of ACE2 can be detrimental as they lead to functional deterioration of the heart and progression of cardiac, renal, and vascular diseases. Recombinant human ACE2 in an animal model of ACE2 knockout mice lowers Ang II. These interactions neutralize the pressor and subpressor pathologic effects of Ang II by producing Ang 1–7 levels in vivo, that might be cardiovascular protective. ACE2 hydrolyzes apelin to Ang II and, therefore, is responsible for the degradation of both peptides. Apelin has emerged as a promising peptide biomarker of heart failure. The serum level of apelin in cardiovascular diseases tends to be decreased. Apelin is recognized as an imperative controller of systemic blood pressure and myocardium contractility. Dysregulation of the apelin/APJ system may be involved in the predisposition to cardiovascular diseases, and enhancing apelin action may have important therapeutic effects

    Adeno-Associated Virus Overexpression of Angiotensin-Converting Enzyme-2 Reverses Diabetic Retinopathy in Type 1 Diabetes in Mice

    Get PDF
    Angiotensin-converting enzyme (ACE)-2 is the primary enzyme of the vasoprotective axis of the renin angiotensin system that regulates the classic renin angiotensin system axis. We aimed to determine whether local retinal overexpression of adenoassociated virus (AAV)-ACE2 prevents or reverses diabetic retinopathy. Green fluorescent protein (GFP)-chimeric mice were generated to distinguish resident (retinal) from infiltrating bone marrow-derived inflammatory cells and were made diabetic using streptozotocin injections. Retinal digestion using trypsin was performed and acellular capillaries enumerated. Capillary occlusion by GFP(+) cells was used to measure leukostasis. Overexpression of ACE2 prevented (prevention cohort: untreated diabetic, 11.3 ± 1.4; ACE2 diabetic, 6.4 ± 0.9 per mm(2)) and partially reversed (reversal cohort: untreated diabetic, 15.7 ± 1.9; ACE2 diabetic, 6.5 ± 1.2 per mm(2)) the diabetes-associated increase of acellular capillaries and the increase of infiltrating inflammatory cells into the retina (F4/80(+)) (prevention cohort: untreated diabetic, 24.2 ± 6.7; ACE2 diabetic, 2.5 ± 1.6 per mm(2); reversal cohort: untreated diabetic, 56.8 ± 5.2; ACE2 diabetic, 5.6 ± 2.3 per mm(2)). In both study cohorts, intracapillary bone marrow-derived cells, indicative of leukostasis, were only observed in diabetic animals receiving control AAV injections. These results indicate that diabetic retinopathy, and possibly other diabetic microvascular complications, can be prevented and reversed by locally restoring the balance between the classic and vasoprotective renin angiotensin system

    Cardiac-Specific Elevations in Thyroid Hormone Enhance Contractility and Prevent Pressure Overload-Induced Cardiac Dysfunction

    Get PDF
    Thyroid hormone (TH) is critical for cardiac development and heart function. In heart disease, TH metabolism is abnormal, and many biochemical and functional alterations mirror hypothyroidism. Although TH therapy has been advocated for treating heart disease, a clear benefit of TH has yet to be established, possibly because of peripheral actions of TH. To assess the potential efficacy of TH in treating heart disease, type 2 deiodinase (D2), which converts the prohormone thyroxine to active triiodothyronine (T3), was expressed transiently in mouse hearts by using the tetracycline transactivator system. Increased cardiac D2 activity led to elevated cardiac T3 levels and to enhanced myocardial contractility, accompanied by increased Ca(2+) transients and sarcoplasmic reticulum (SR) Ca(2+) uptake. These phenotypic changes were associated with up-regulation of sarco(endo)plasmic reticulum calcium ATPase (SERCA) 2a expression as well as decreased Na(+)/Ca(2+) exchanger, beta-myosin heavy chain, and sarcolipin (SLN) expression. In pressure overload, targeted increases in D2 activity could not block hypertrophy but could completely prevent impaired contractility and SR Ca(2+) cycling as well as altered expression patterns of SERCA2a, SLN, and other markers of pathological hypertrophy. Our results establish that elevated D2 activity in the heart increases T3 levels and enhances cardiac contractile function while preventing deterioration of cardiac function and altered gene expression after pressure overload

    SARS-CoV-2 Infections and ACE2: Clinical Outcomes Linked With Increased Morbidity and Mortality in Individuals With Diabetes

    Get PDF
    Individuals with diabetes suffering from coronavirus disease 2019 (COVID-19) exhibit increased morbidity and mortality compared with individuals without diabetes. In this Perspective, we critically evaluate and argue that this is due to a dysregulated renin-angiotensin system (RAS). Previously, we have shown that loss of angiotensin-I converting enzyme 2 (ACE2) promotes the ACE/angiotensin-II (Ang-II)/angiotensin type 1 receptor (AT1R) axis, a deleterious arm of RAS, unleashing its detrimental effects in diabetes. As suggested by the recent reports regarding the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), upon entry into the host, this virus binds to the extracellular domain of ACE2 in nasal, lung, and gut epithelial cells through its spike glycoprotein subunit S1. We put forth the hypothesis that during this process, reduced ACE2 could result in clinical deterioration in COVID-19 patients with diabetes via aggravating Ang-II–dependent pathways and partly driving not only lung but also bone marrow and gastrointestinal pathology. In addition to systemic RAS, the pathophysiological response of the local RAS within the intestinal epithelium involves mechanisms distinct from that of RAS in the lung; however, both lung and gut are impacted by diabetes-induced bone marrow dysfunction. Careful targeting of the systemic and tissue RAS may optimize clinical outcomes in subjects with diabetes infected with SARS-CoV-2.This study was supported by National Institutes of Health grants R01EY025383, R01EY012601, R01EY028858, and R01EY028037 to M.B.G. A.G.O. was supported in part by R01NS10241

    ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity

    Get PDF
    Obesity is increasing in prevalence and is strongly associated with metabolic and cardiovascular disorders. The renin-angiotensin system (RAS) has emerged as a key pathogenic mechanism for these disorders; angiotensin (Ang)-converting enzyme 2 (ACE2) negatively regulates RAS by metabolizing Ang II into Ang 1-7. We studied the role of ACE2 in obesity-mediated cardiac dysfunction. ACE2 null (ACE2KO) and wild-type (WT) mice were fed a high-fat diet (HFD) or a control diet and studied at 6 months of age. Loss of ACE2 resulted in decreased weight gain but increased glucose intolerance, epicardial adipose tissue (EAT) inflammation, and polarization of macrophages into a proinflammatory phenotype in response to HFD. Similarly, human EAT in patients with obesity and heart failure displayed a proinflammatory macrophage phenotype. Exacerbated EAT inflammation in ACE2KO-HFD mice was associated with decreased myocardial adiponectin, decreased phosphorylation of AMPK, increased cardiac steatosis and lipotoxicity, and myocardial insulin resistance, which worsened heart function. Ang 1-7 (24 µg/kg/h) administered to ACE2KO-HFD mice resulted in ameliorated EAT inflammation and reduced cardiac steatosis and lipotoxicity, resulting in normalization of heart failure. In conclusion, ACE2 plays a novel role in heart disease associated with obesity wherein ACE2 negatively regulates obesity-induced EAT inflammation and cardiac insulin resistance

    Impact of The Protective Renin-Angiotensin System (RAS) on The Vasoreparative Function of CD34+ CACs in Diabetic Retinopathy

    Get PDF
    Purpose: In diabetes, the impaired vasoreparative function of Circulating Angiogenic Cells (CACs) is believed to contribute to the progression of diabetic retinopathy (DR). Accumulating evidence suggests that the protective arm of renin-angiotensin system (RAS) ACE2 Angiotensin-(1-7) Mas plays an important role in restoring the function of diabetic CACs. We examined the protective RAS in CACs in diabetic individuals with different stages of retinopathy. Methods: Study subjects (n43) were recruited as controls or diabetics with either no DR, mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR or proliferative DR (PDR). Fundus photography and fluorescein angiograms were analyzed using Vessel Generation Analysis (VESGEN) software in a cohort of subjects. CD34+ CACs were isolated from peripheral blood of diabetics and control subjects. RAS gene expressions in CACs were measured by qPCR. The vasoreparative function of CACs was assessed by migration ability toward CXCL12 using the QCM 5M 96-well chemotaxis cell migration assay. Results: ACE2 gene is a key enzyme converting the deleterious Angiotensin II to the beneficial Angiotensin-(1-7). ACE2 expression in CACs from diabetic subjects without DR was increased compared to controls, suggestive of compensation (p0.0437). The expression of Mas (Angiotensin-(1-7) receptor) in CACs was also increased in diabetics without DR, while was reduced in NPDR compared to controls (p0.0002), indicating a possible loss of compensation of the protective RAS at this stage of DR. The presence of even mild NPDR was associated with CD34+ CAC migratory dysfunction. When pretreating CACs of DR subjects with Angiotensin-(1-7), migratory ability to a chemoattractant CXCL12 was restored (p0.0008). By VESGEN analysis, an increase in small vessel density was observed in NPDR subjects when compared with the controls. Conclusions: These data suggest the protective RAS axis within diabetic CACs may help maintain their vasoreparative potential. The VESGEN analysis supports the presence of retinal repair in small vessels. The loss of the protective arm of RAS may predict the progression of DR

    Antagonism of angiotensin 1-7 prevents the therapeutic effects of recombinant human ACE2

    Get PDF
    Activation of the angiotensin 1-7/Mas receptor (MasR) axis counteracts angiotensin II (Ang II)-mediated cardiovascular disease. Recombinant human angiotensin-converting enzyme 2 (rhACE2) generates Ang 1-7 from Ang II. We hypothesized that the therapeutic effects of rhACE2 are dependent on Ang 1-7 action. Wild type male C57BL/6 mice (10-12 weeks old) were infused with Ang II (1.5 mg/kg/d) and treated with rhACE2 (2 mg/kg/d). The Ang 1-7 antagonist, A779 (200 ng/kg/min), was administered to a parallel group of mice. rhACE2 prevented Ang II-induced hypertrophy and diastolic dysfunction while A779 prevented these beneficial effects and precipitated systolic dysfunction. rhACE2 effectively antagonized Ang II-mediated myocardial fibrosis which was dependent on the action of Ang 1-7. Myocardial oxidative stress and matrix metalloproteinase 2 activity was further increased by Ang 1-7 inhibition even in the presence of rhACE2. Activation of Akt and endothelial nitric oxide synthase (eNOS) by rhACE2 were suppressed by the antagonism of Ang 1-7 while the activation of pathological signaling pathways was maintained. Blocking Ang 1-7 action prevents the therapeutic effects of rhACE2 in the setting of elevated Ang II culminating in systolic dysfunction. These results highlight a key cardioprotective role of Ang 1-7, and increased Ang 1-7 action represents a potential therapeutic strategy for cardiovascular diseases. KEY MESSAGES: Activation of the renin-angiotensin system (RAS) plays a key pathogenic role in cardiovascular disease. ACE2, a monocarboxypeptidase, negatively regulates pathological effects of Ang II. Antagonizing Ang 1-7 prevents the therapeutic effects of recombinant human ACE2. Our results highlight a key protective role of Ang 1-7 in cardiovascular disease

    Analisis Penerapan Sistem Akuntansi Penjualan Kredit Dan Penerimaan Kas Dalam Mendukung Pengendalian Intern Perusahaan (Studi Kasus PT. Smart Tbk Refinery Surabaya)

    Full text link
    System of selling credit accounting and system of cash receiving from account receivable is the source of life to achieving company goals. This research on the system of credit sales and cash receipts to support the company internal control. This research was conducted at PT. SMART Tbk Refinery Surabaya. PT. SMART Tbk Refinery Surabaya only selling cooking oil in the form of branded product and trading product on credit. PT. SMART Tbk Refinery Surabaya still has any weakness on system of selling credit accounting and system of cash receiving from account receivable, some of the sales transaction activity that occurred less supportive of the company\u27s internal control. This study aims to provide information to companies about the advantages and weakness of credit sales accounting system and cash receipts that have been applied by the company
    corecore