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The renin-angiotensin system (RAS) regulates vascular tone and plays a critical role in vascular remodeling, which is the result 
of a complex interplay of alterations in vascular tone and structure. Inhibition of the RAS has led to important pharmacological 
tools to prevent and treat vascular diseases such as hypertension, diabetic vasculopathy and atherosclerosis. Angiotensin con-
verting enzyme 2 (ACE2) was recently identified as a multifunctional monocarboxypeptidase responsible for the conversion of 
angiotensin (Ang) II to Ang-(17). The ACE2/Ang-(17) signaling has been shown to prevent cellular proliferation, patholog-
ical hypertrophy, oxidative stress and vascular fibrosis. Thus, the ACE2/Ang-(17) signaling is deemed to be beneficial to the 
cardiovascular system as a negative regulator of the RAS. The addition of the ACE2/Ang-(17) signaling to the complexities 
of the RAS may lead to the development of novel therapeutics for the treatment of hypertension and other vascular diseases. 
The present review considers recent findings regarding the ACE2/Ang-(17) signaling and focuses on its regulatory roles in 
processes related to proliferation, inflammation, vascular fibrosis and remodeling, providing proof of principle for the potential 
use of ACE2 as a novel therapy for vascular disorders related to vascular remodeling. 
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The renin-angiotensin system (RAS) regulates vascular tone 
and plays a critical role in adaptive and maladaptive vascu-
lar remodeling [13]. Vascular remodeling is the result of a 
complex interplay of alterations in vascular tone and struc-
ture, including changes in both the cellular and non-cellular 
components that depend on the pathological condition, in-
flammation, endothelial dysfunction and extracellular ma-
trix (ECM) synthesis or degradation [1,4,5]. The RAS con-
sists of a series of enzymatic reactions culminating in the 
generation of angiotensin (Ang) II in plasma as well as in 
various tissues including the heart and vasculature. The det-

rimental effects of Ang II almost mediated via the Ang II 
type 1 (AT1) receptor [68]. Inhibition of the Ang II/AT1 
signaling has led to important pharmacological tools to 
prevent and treat vascular diseases related to vascular re-
modeling.  

Angiotensin converting enzyme 2 (ACE2), a multifunc-
tional monocarboxypeptidase, was recently identified as a 
negative regulator of the RAS [2,9,10]. The classical path-
way of the RAS involving the ACE-Ang II-AT1 receptor 
axis is now antagonized by the second arm constituted by 
the ACE2-Ang-(17)-Mas receptor axis. The balance be-
tween ACE and ACE2 is the key factor in regulating angio-
tensin levels [1113]. ACE2 cleaves several important bio-
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logical peptides such as Ang I, Ang II, Apelin-13, Ape-
lin-17, Apelin-36, and [des-Arg9]-bradykinin [1,12,1416]. 
ACE2 can cleave Ang I to generate the inactive Ang-(19) 
peptide, which can then be converted to the vasodilator pep-
tide Ang-(17) by ACE or neutral endopeptidase (NEP) 
[1719]. ACE2 also directly metabolizes Ang II to generate 
the beneficial heptapeptide Ang-(17). Ang-(17) is a bio-
logically active metabolite of the RAS whose actions are 
often opposite to those attributed to the Ang II/AT1 signal-
ing (Figure 1) [13,20,21]. There is increasing interest re-
garding the protective role of the ACE2/Ang-(1–7) signal-
ing in vascular disease. In this review, we focus on regula-
tory roles of the ACE2/Ang-(1–7) signaling in proliferation, 
inflammation, vascular fibrosis and remodeling. 

1  ACE2/Ang-(17) signaling and vascular pro-
liferation and hypertrophy 

The Ang II/AT1 signaling has been shown to be aberrantly 
activated in vascular hypertrophy and remodeling by pro-
moting vascular smooth muscle cells (VSMC) growth, 
transdifferentiation and proliferation (Figure 1), eliciting a 
variety of biological actions of the RAS in the vascular ho-
meostasis [1,12,22,23]. As a specific Ang II-degredating 
enzyme, ACE2 suppresses VSMC proliferation and vascu-
lar hypertrophy. Loss of ACE2 led to vascular proliferation 
and elevated migration of SMC while ACE2 overexpression 
inhibited vascular proliferation and hypertrophy by pre-
venting aortic wall thickening [1,4,10,24–27]. The Janus 
kinase 2 (JAK2)/signal transducer and activators of tran-
scription 3 (STAT3) signaling cascades play a key role in 
VSMC growth and vascular remodeling (Figure 1) 
[10,28,29]. In our previous studies [4,6,10,12], we revealed 
that administration of human recombinant ACE2 (hrACE2) 
significantly abolished the Ang II-mediated cardiovascular 
proliferation and remodeling in association with the preven-
tion of the JAK-STAT-SOCS signaling (Figure 1, Table 1). 
Inhibition of ACE2 by DX600 obviously facilitated Ang 
II-mediated VSMC proliferation [6,30]. Moreover, we 
demonstrated previously that ACE2 deficiency led to great-
er increases in Ang II-mediated profilin-1 expression in 
aortas of ACE2-mutant mice associated with enhanced 
phosphorylation levels of Akt and extracellular sig-
nal-regulated kinase 1/2 (ERK1/2)/mitogen activated pro-
tein kinases (MAPK) [1]. Conversely, ACE2 overexpres-
sion resulted in reduction of profilin-1 expression and 
downregulation of Akt/ERK phosphorylated signaling 
[1,10,31] (Table 1). The actin-binding protein profilin-1 has 
recently been linked to VSMC proliferation, vascular pa-
thology and vascular diseases via the modulation of actin 
polymerization and cytoskeleton remodeling [1,6,3234]. 
Compared with nontransgenic controls, profilin-1 overex-
pression results in vascular hypertrophy and remodeling 

characterized with higher medial thickness and VSMC pro-
liferation in aorta of profilin-1 transgenic mice with activa-
tion of the ERK/MAPK phosphorylation signaling [34,35]. 
Intriguingly, downregulation of profilin-1 with profilin-1 
siRNA and rhACE2 largely abolished Ang II-mediated 
VSMC proliferation and oxidative stress [6]. These findings 
confirm that the ACE2/Ang-(1–7) signaling exerts its bene-
ficial effects on vascular proliferation and hypertrophy via 
the modulation of JAK2-STAT3-SOCS3 and profilin-1/ 
ERK signaling pathways. 

In our previous work, Ang-(17) treatment strikingly 
improved the pressure overload-induced cardiovascular 
hypertrophy and remodeling in the ACE2-mutant mice via 
the suppression of activation of ERK1/2 and STAT3 phos-
phorylation signaling (Table 1) [19]. Ang-(17) has been 
shown to inhibit VSMC proliferation and oppose the mito-
genic effects of Ang II [25]. Strawn and his co-workers re-
ported that Ang-(1–7) largely inhibited VSMC proliferation 
of carotid arteries in adult male Sprague-Dawley rats. 
Ang-(17) supplement partially blunted the Ang II-, or 
platelet-derived growth factor (PDGF)-stimulated VSMC 
proliferation [25,26,36]. In addition, Ang-(17) promoted 
the release of prostacyclin from VSMC isolated from the 
aortas of hypertensive rats (Table 1) [37]. Michiya and col-
leagues [38] have investigated that reduced vascular medial 
thickness and attenuated vascular hypertrophy were ob-
served in aortas of spontaneously hypertensive rats (SHR) 
combined with increased levels of ACE2 and Ang-(1–7) 
during blockade of Ang II receptors. Treatment with 
azilsartan, an AT1 receptor blocker, or Ang-(17) attenuat-
ed neointimal area and VSMC proliferation as well as aug-
mented mRNA expression of ACE2 in mice with vascular 
injury induced by polyethylene-cuff placement around the 
mouse femoral artery [39]. The above observations imply 
protective effects of the ACE2/Ang-(17) signaling on 
vascular proliferation and hypertrophy.  

2  ACE2/Ang-(17) signaling and vascular in-
flammation and oxidative stress 

The effects of vascular inflammation and oxidative stress in 
the initiation and progression of cardiovascular diseases 
have been well recognized [1,39]. Generally, activation of 
NADPH oxidase is a central mediator of the pathological 
effects of Ang II, contributing to enhanced production of 
reactive oxygen species (ROS) and activation of pro-   
inflammatory transcription factors and vascular injury (Fig-
ure 1) [4042]. An important evidence for the relevance of 
the ACE2/Ang-(17) signaling as a potent target to suppress 
inflammation comes from the observation that administra-
tion of XNT (1-[(2-dimethylamino)ethylamino]-4-(hy- 
droxymethyl)-7-[(4-methylphenyl)sulfonyloxy]-9H-xan-  
thene-9-one), a small molecule ACE2 agonist, improved the 
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endothelial function of vessels of both hypertensive and 
diabetic rats accompanied by attenuation of oxidative stress 
(Table 1) [43]. In a previous report (Table 1), we demon-
strated that loss of ACE2 led to marked increases in the Ang II- 
induced aortic expression of inflammatory cytokines and 
chemokines, including monocyte chemoattractant protein 1 
(MCP-1), interleukin-1β (IL-1β), and IL-6 [1]. We also 
found that loss of ACE2 resulted in greater activation of 
NADPH oxidase and ROS production in mice aortas with 
enhanced expression of profilin-1 [1]. Profilin-1 overex-
pression has been revealed to aggravate vascular inflamma-
tion and vascular remodeling [44]. In the hypertensive rat 
model, rhACE2 delivered over a 14-day period partly cor-
rected the hypertension, the NADPH oxidase activation and 
the increased superoxide generation in the aortas with a 
drastic reduction in plasma Ang II/Ang-(1–7) peptide ratio 
[45]. We have previously reported [4,6,12,15,19] that ad-
ministration of rhACE2 or Ang-(17) prevented Ang II- 
mediated activation of NADPH oxidase and profilin-1 ex-
pression, contributing to reduction of ROS generation in 
VSMC or pressure-overloaded ACE2-null mice (Table 1).  

ACE2 overexpression prevented the Ang II-induced in-
creases in proinflammatory reaction and activation of 
NADPH oxidase in cultured VSMC (Table 1), and these 
protective effects of ACE2 could be blocked by the co-   
treatment with Ang-(17)/Mas antagonist A-779 [6,46,47]. 
Elevated production of ROS in response to increased RAS 
activity in the vasculature resulted in heightened transcrip-
tion of nuclear factor-κB (NF-κB) (Figure 1), and these lat-
ter further promoted activation of NADPH oxidase and en-
dothelial lesion via increasing levels of vascular cell adhe-
sion molecule 1 (VCAM-1), intercellular adhesion molecule 
1 (ICAM-1), MCP-1 and IL-6 (Figure 1) [48,49]. Sahara et 
al. [50] have revealed that treating ACE2-mutant mice with 
TNF- triggered up-regulated expression of inflammatory 
factors, including MCP-1, macrophage inflammatory pro-
tein (MIP)-1, MIP-2 (Table 1). In the cerebral artery of 
rats (Table 1), Ang-(17) infusion led to reduced oxidative 
stress with reduction of NF-κB activity [51]. The ACE2/ 
Ang-(17) signaling has been exhibited to be the coun-
ter-regulator of Ang II in the context of leukocytes recruit-
ment [52,53]. Expression and release of inflammatory fac-
tors were obviously enhanced in macrophages from 
ACE2-deficiency mice with accelerated monocytes adhe-
sion to vascular endothelial cells (ECs) and promotion of 
the EC inflammation (Table 1) [54]. In aortic adventitial 
fibroblasts (AFs), Ang II stimulated monocytes recruitment 
through pathway involving fibroblasts-derived MCP-1 and 
IL-6, and these monocytes further augmented production of 
proinflammatory cytokines [55]. Treatment with azilsartan 
or Ang-(17) downregulated the mRNA levels of MCP-1, 
TNF-, and IL-1, and superoxide anion production in the 
injured artery [39]. ACE2 overexpression inhibited macro-
phages function and Ang II-mediated proinflammatory fac- 

 

Figure 1 (color online)  The roles and mechanisms of the ACE2/Ang- 
(17) signaling in the vascular proliferation, inflammation, fibrosis and 
remodeling. ACE2, angiotensin converting enzyme 2; Ang II, angiotensin 
II; Ang-(17), angiotensin-(1-7); ERK, extracellular signal-regulated ki-
nase; MAPK, mitogen activated protein kinases; ROS, reactive oxygen 
species; IL-1, interleukin-1; IL-6, interleukin-6; JAK, janus kinase; STAT, 
signal transducer and activators of transcription; PKC, protein kinase C; 
NF-κB, nuclear factor-κB; OPN, osteopontin; MCP-1, monocyte chemoat-
tractant protein 1; PDGF, platelet-derived growth factor; TGF-β, trans-
forming growth factor-β. 

tors [56], further supporting the hypothesis that the 
ACE2/Ang-(17) signaling might be a promising avenue 
for developing cardiovascular disease therapeutic agents. 

3  ACE2/Ang-(17) signaling and vascular fi-
brosis  

The ACE2/Ang-(17) signaling has been exhibited to be a 
negative modulator of vascular fibrosis by modulation of 
fibroblast density, fibrogenic pathways and the production 
of ECM proteins such as collagen and matrix metallopro-
teinases (MMPs) (Table 1). Loss of ACE2 augmented Ang 
II-mediated expression of fibrosis-associated genes such as 
transforming growth factor-β (TGF-β), connective tissue 
growth factor (CTGF), procollagen type I and procollagen 
type III [12,13]. ECM deposition and cell migration both 
are adverse effects of the TGF-β-CTGF signaling associated 
activation of multifunctional matrix cellular factor [5760]. 
There is good evidence that Ang II acting on AT1 receptor 
contributes dramatically to fibroblasts proliferation and ex-
pression of ECM proteins by activation of the TGF-β-CTGF 
signaling. Ang II-induced activation of FAK, which was 
highly expressed in cultured VSMCs, led to cell adhension 
to the ECM and activation of cytoskeletal proteins, finally 
influencing vascular cell shape and movement [61]. More-
over, Ang II promoted expression of osteopontin (OPN) 
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Table 1  The regulatory roles of ACE2/Ang-(17) signaling in the vascular systema) 

Experiment models Strategy used Effects References 

HUASMC in vitro rhACE2 treatment 
↓VSMC proliferation ↓ERK1/2, 

↓JAK/STAT 
[6] 

Mice in vivo rhACE2 treatment ↓ERK1/2, PKC [12] 

Rat aorta in vivo ACE2 overexpression ↓neointimal formation [65] 

Mice VSMC in vitro ACE2 inhibitor ↑ERK1/2 [30] 

Rat VSMC in vitro Ang-(17) treatment ↓VSMC proliferation [25] 

Mice vascular in vivo Ang-(17) infusion 
↓ERK1/2, STAT3 
↓NADPH oxidase 

[19] 

Rat aorta in vitro Ang-(17) treatment ↑prostacyclin [37] 

ApoEKO mice 
in vivo 

Ang-(17) infusion 
 

↓ ROS, eNOS 
↑endothelial function 

[64] 

Mice aorta in vivo ACE2 deletion 
↑inflammation 
↑MMP-2, -9 

[54] 

Mice aorta in vivo ACE2 deletion 
↑NADPH, ROS 

↑profilin-1; Akt/ERK 
[15] 
[1] 

Mice VSMC in vitro ACE2 overexpression ↓ NADPH oxidase [46] 

Rat pulmonary artery 
in vivo 

XNT administration 
↓ IL-1β, IL-6, TNF- 
↓MCP-1, TGF-β 

[24] 

Rat vascular in vivo Ang-(17) infusion ↓NF-κB; ROS [51] 

ACE2KO/mice aorta 
in vivo 

TNF-α treatment 
↑MCP-1, MIP-1, 
↑MIP-2 

[50] 

Akita mice in vivo ACE2 deletion ↑MMP-2,-9,-12,-13 [4] 

a) VSMCs, vascular smooth muscle cells; KO, knockout; Akt, protein kinase B; ERK, extracellular signal-regulated kinase; ROS, reactive oxygen spe-
cies; MMPs, matrix metalloproteinases; MIP, macrophage inflammatory protein; eNOS, endothelial nitric oxide synthetase; NADPH, nicotinamide adenine 
dinucleotide phosphate; JAK, janus kinase; STAT, signal transducer and activators of transcription; XNT, ACE2 agonist; PKC, protein kinase C; MCP-1, 
monocyte chemoattractant protein 1; TNF-, tumor necrosis factor-; IL-1β, interleukin-1β; IL-6, interleukin-6. 

which acts as ECM protein influencing VSMC adhesion and 
migration (Figure 1) [62]. The anti-fibrotic effects of ACE2 
in VSMCs were primarily executed through the Mas recep-
tor, as the Mas-deficient mice exhibited tendency to 
pro-fibrosis in cardiovascular system [63]. Long-term infu-
sion of Ang-(17) exerted vasoprotective and atheroprotec-
tive effects in the ApoE knockout mice model with in-
creased eNOS expression and improvement of endothelial 
function (Table 1) [64]. In addition, Ang-(17) treatment 
has been shown to attenuate neointimal formation by struc-
tural recovery of endothelium and exert the atheroprotective 
effects through acting on both the AT2 and the Mas receptor 
(Table 1) [65]. The interesting interaction between the 
ACE2/Ang-(17) signaling and AT2 receptor has been well 
documented and this crosstalk greatly broadens our under-
standing of the RAS. 

Studies have suggested that the ACE2/Ang-(17) signal-
ing blocks the key pro-fibrogenic signaling initiated by Ang 
II [4,53]. In addition to the decrease in the plasma Ang II 
level and the increase in Ang-(17) level, the protective 
aspects of ACE2 were partly due to its down-modulation of 
MMPs [16]. Genetic ACE2 deficiency in ApoE knockout 
mice resulted in increased vascular atherosclerosis via raising 
expression of VCAM-1, MCP-1 and MMP-2, and MMP-9 
(Table 1) [54]. The increased activities of MMPs, especially 
MMP-2 and MMP-9, contribute dramatically to the synthe-
sis and deposition of ECM proteins in the cardiovascular 

system [12,58,66]. In our recent study [4,9,12,13,66], we 
demonstrated that ACE2 served as a protective agent 
against diabetes-induced cardiovascular complications. Loss 
of ACE2 led to greater activation of pro-MMP2, MMP2, 
MMP-9, MMP-12, MMP-13 and MMP-14 in the Akita/ 
ACE2 double mutant mice, resulting in degradation of ECM 
(Table 1). While enhancement of ACE2 by AT1 receptor 
blockade rescued the cardiovascular remodeling and dys-
function and normalized the altered fibrosis-associated sig-
naling pathways in cardiovascular system [4]. The an-
ti-fibrosis effect of ACE2 appears promising for manage-
ment of patients with hypertension, atherosclerosis, and 
aneurysm and so on. It will be of great significance to  
illuminate the crosstalk between the ACE2 and vascular 
fibrosis.  

4  Conclusion and perspectives 

The development of vascular remodeling is associated with 
multiple interactions of cell signaling. Activation of the 
tissue and systemic RAS and the generation of Ang II play a 
key role in vascular diseases. Consistent with increased Ang II 
action via AT1 receptor, Ang II-induced high levels of oxi-
dative stress, inflammation and fibrosis come into being, 
which are the initial steps of vascular injury and then con-
tribute to VSMC proliferation, vascular remodeling and 
dysfunction [3,15,53]. ACE2 is the first known homolog of 
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human ACE and functions as a pleiotropic monocarboxy-
peptidase responsible for the conversion of Ang II to 
Ang-(17). The ACE2/Ang-(17) signaling contends 
against the formation of Ang II and counterbalances the 
Ang II/AT1-mediated vascular proliferation, hypertrophy 
and remodeling, thereby functioning as a negative regulator 
of the RAS in cardiovascular system. Remarkable effects of 
ACE2 on attenuation of Ang II-induced VSMC prolifera-
tion, oxidative stress and inflammation in vasculature lead 
to the development of ACE2 as a potential novel medicine 
for treatment of cardiovascular disease. The beneficial ef-
fects of ACE2/Ang-(17) signaling were demonstrated in 
the clinically relevant model of pressure-overload- and Ang II- 
induced vascular remodeling and injury. The addition of the 
ACE2/Ang-(17) signaling to the complexities of the RAS 
may lead to the development of a novel therapeutic ap-
proach for patients with hypertension and other vascular 
diseases related to vascular remodeling. In future studies, a 
greater understanding of the processes involved in vascular 
proliferation, fibrosis and pathological remodeling, together 
with the mechanisms through which signaling pathways 
interact, will facilitate the exploitation of new therapeutic 
medicine to more efficiently control vascular remodeling. 
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