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Obesity is increasing in prevalence and is strongly as-
sociated with metabolic and cardiovascular disorders.
The renin-angiotensin system (RAS) has emerged as a
key pathogenic mechanism for these disorders; angio-
tensin (Ang)-converting enzyme 2 (ACE2) negatively reg-
ulates RAS by metabolizing Ang Il into Ang 1-7. We
studied the role of ACE2 in obesity-mediated cardiac dys-
function. ACE2 null (ACE2KO) and wild-type (WT) mice
were fed a high-fat diet (HFD) or a control diet and studied
at 6 months of age. Loss of ACE2 resulted in decreased
weight gain but increased glucose intolerance, epicardial
adipose tissue (EAT) inflammation, and polarization of
macrophages into a proinflammatory phenotype in re-
sponse to HFD. Similarly, human EAT in patients with
obesity and heart failure displayed a proinflammatory
macrophage phenotype. Exacerbated EAT inflam-
mation in ACE2KO-HFD mice was associated with
decreased myocardial adiponectin, decreased phos-
phorylation of AMPK, increased cardiac steatosis
and lipotoxicity, and myocardial insulin resistance,
which worsened heart function. Ang 1-7 (24 p.g/kg/h)
administered to ACE2KO-HFD mice resulted in ame-
liorated EAT inflammation and reduced cardiac steatosis
and lipotoxicity, resulting in normalization of heart
failure. In conclusion, ACE2 plays a novel role in heart
disease associated with obesity wherein ACE2 nega-
tively regulates obesity-induced EAT inflammation and
cardiac insulin resistance.

Obesity is a growing worldwide health problem and re-
sults in an increased health care burden and a decreased
life expectancy. Obesity itself is an independent risk fac-
tor for the development of heart failure with preserved
ejection fraction (HFPEF) independent of other comorbid
conditions (1-4). Although a number of mechanisms are
speculated to contribute to obesity-induced cardiac dys-
function, including lipotoxicity, inflammation, mitochondri-
al dysfunction, endoplasmic reticulum stress, and apoptosis,
the ultimate cause and mechanisms remain elusive (5-7).
Clinical and experimental evidence has revealed a key role
of excessive fat in the onset of obesity and accompanying
inflammation and cardiac dysfunction.

Components of the renin-angiotensin system (RAS) are
present in white and brown adipose tissues where the lo-
cal RAS can be pathogenic (8). The angiotensin type 1 and
type 2 receptors (AT1Rs and AT2Rs, respectively) may
mediate the effect of angiotensin (Ang) II and cause upre-
gulation of adipose tissue lipogenesis (mediated through
AT2R) and downregulation of lipolysis (mediated through
AT1R) (9,10). Ang-converting enzyme 2 (ACE2) is a cen-
tral member of the RAS family that degrades Ang II into
Ang 1-7 (11,12). Ang 1-7 is a biologically active product
of the Ang II degradation that through the activation of
Mas receptors leads to vasodilatory, antihypertrophic,
and antifibrotic effects (13-16). ACE2 is widely distributed
in various organs and cell types, including adipocytes (17).
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It is a negative regulator of the activated RAS in various
disease states, including heart failure, diabetic nephropathy
and cardiomyopathy, and vascular dysfunction (18-21). In
this study, we determined a novel role of ACE2 in adipose
tissue inflammation and its effects on cardiac function in
diet-induced obesity (DIO).

RESEARCH DESIGN AND METHODS

Experimental Animals and Protocols

Ace2™”V mutant mice (ACE2KO) backcrossed into the
C57BL/6 background for at least eight generations were
used in the current study (18,21,22). All experiments
were performed in accordance with University of Alberta
institutional guidelines, which conform to guidelines
published by the Canadian Council on Animal Care and
the Guide for the Care and Use of Laboratory Animals
published by the U.S. National Institutes of Health (revised
2011). Male wild-type (WT) and ACE2KO mice were fed
either a high-fat diet (HFD) (45% kilocalories from fat) or
a control diet (CON) (10% kilocalories from fat) from
weaning to 6 months of age. ALZET microosmotic pumps
(Model 1002; DURECT Corporation) were implanted sub-
cutaneously in ACE2KO-HFD mice to deliver Ang 1-7
(24 pg/kg/h) or saline (control) for 4 weeks (21). All
mice were studied at 6 months of age. Epicardial adipose
tissues (EATs) were collected under a stereo microscope
after removal of the pericardium and pericardial fat.

Human EAT

Human EAT obtained from explanted nonobese, non-
failing control (NFC) hearts and diseased hearts from
obese (BMI >30 kg/mz) patients with HFPEF secondary
to hypertension or transplant vasculopathy was studied as
part of the Human Explanted Heart Program (HELP) at
the Mazankowski Alberta Heart Institute and the Human
Organ Procurement and Exchange (HOPE) program at the
University of Alberta Hospital. All experiments were per-
formed in accordance with institutional guidelines and
were approved by the institutional ethics committee. In-
formed consent was obtained from all participants.

Intraperitoneal Glucose Tolerance Test

An intraperitoneal glucose tolerance test was performed
on overnight-fasted mice (16 h). Briefly, mice were admin-
istered glucose 1 g/kg ip., and blood glucose levels were
monitored at 0, 15, 30, 60, 90, and 120 min postglucose
administration and plotted against time curves to determine
the glucose tolerance (13).

Echocardiography, Pressure-Volume Loop Analysis,
and Quantitative Magnetic Resonance

Transthoracic echocardiography was performed noninva-
sively to assess systolic and diastolic function as described
previously using a Vevo 770 high-resolution imaging
system equipped with a 30-MHz transducer (RMV707B;
VisualSonics, Toronto, Ontario, Canada) (13,18). Mice were
placed on a heating pad, and a nose cone with 1.5% iso-
flurane in 100% oxygen was applied. Temperature was
maintained at 36.5-37.5°C. Ultrasound gel was placed on

Diabetes Volume 65, January 2016

the chest of the anesthetized mouse. The temperature and
heart rate were constantly monitored during the scanning.
M-mode images were obtained for measurements of left
ventricular (LV) ejection fraction. Transmitral flow and tissue
Doppler imaging were used to assess the E/A ratio and E/E’
ratios. LV pressure-volume relationships were assessed
using a 1.2-F admittance catheter (Scisense Inc.) as previously
described (13). The position of the catheter was monitored by
pressure along with the magnitude and phase using the
ADVantage Pressure-Volume System (Scisense Inc.) and
iWorx (iWorx Systems, Inc.). Online as well as offline calcu-
lations were performed using LabScribe2? version 2.347000
software. Body composition (either fat mass or lean
mass) was assessed using an EchoMRI-900 (EchoMRI LLC,
Houston, TX) as previously reported (13).

Isolated Working Heart Perfusion

At the end of the protocol, isolated hearts were perfused
in a working mode at a left atrial preload of 11.5 mmHg
and an aortic afterload of 50 mmHg as previously
reported (13). The perfusate contained 2.5 mmol/L Ca”*,
5 mmol/L [U—14C]glucose, and 1.2 mmol/L [9,10—3H]pa]_mitate
prebound to 3% fatty acid—free BSA. We used a higher
concentration of palmitate to simulate the physiological
fatty acid levels in HFD-fed mice. Hearts underwent
aerobic perfusion in the absence of insulin for the first
30 min, and then 100 wU/mL insulin was added to the
perfusate to examine the response to insulin. Glucose oxida-
tion or palmitate oxidation rates were measured by quanti-
tative collection of **CO, and 3H,O from [U-1%C] glucose
and [9,10—3H]palmitate, respectively. Glucose-derived
and palmitate-derived ATP production rates were calcu-
lated from the rates of glucose oxidation and palmitate
oxidation.

Histological and Immunofluorescence Analyses, Oil
Red O Staining, Western Blot Analysis, and TagMan
Real-Time PCR

Mouse and human EAT and mouse hearts were studied
using histology, immunofluorescence (IF) staining, wheat
germ agglutinin (WGA) staining (to delineate the cell
membrane), confocal imaging, Western blot analyses, and
TagMan real-time PCR molecular analyses, as previously
described (13,18,20). Picrosirius red staining was per-
formed on the 10-pm-thick formalin-fixed paraffin-
embedded sections to assess cardiac fibrosis as previously
described (18,23). Oil Red O staining was carried out
on 5-pm-thick optimal cutting temperature—embedded
cryosections as previously described (13).

Tumor Necrosis Factor-a ELISA

ELISA was carried out in the EAT to assess tumor necrosis
factor-a (TNF-a) protein levels using a commercially avail-
able kit (R&D Systems) as previously described (24). Briefly,
50 pg of the total proteins isolated from the pooled EAT
was used to assess TNF-a levels using the murine recombi-
nant TNF-a as standard. The plates were analyzed with
a multiplate reader (SpectraMax).
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Figure 1—ACE?2 is upregulated in EAT in response to DIO, whereas loss of ACE2 results in increased DIO-induced EAT inflammation.
Representative IF images show increased adipocyte ACE2 expression in response to DIO (A). Body weight changes in WT and ACE2KO
mice in response to CON and HFD show decreased body weight gain in ACE2KO-HFD mice compared with WT-HFD mice (B). Intraperi-
toneal glucose tolerance test in fasted mice shows increased glucose intolerance in ACE2KO-HFD mice (C). Representative IF images for
F4/80 and CD11c and CD206 (D) show markedly increased inflammation in ACE2KO-HFD EAT. WT-HFD shows increased resident CD206*
anti-inflammatory Md, whereas ACE2KO-HFD shows polarization in the M phenotype, resulting in increased CD11c¢* proinflammatory M
(D-F). Gene expression analysis and ELISA show a greater increase in TNF-a [MRNA (G) and protein levels (H)] and iNOS (/) mRNA
expression and a lesser increase in IL-10 (J) mMRNA expression in ACE2KO-HFD EAT compared with WT-HFD. Representative IF images
show increased adipocyte ACE2 expression in obese patients with HFPEF compared with nonobese NFC subjects (K). Representative IF
images for F4/80 and CD11c and CD206 in the human adipose tissue show markedly increased CD11c* M¢ with a smaller increase in
CD206* M¢ in EAT of human explanted hearts from obese patients with HFPEF (L-N). n =4 (A, D-F, K, L); n =20 B); n =8 (C, H); n =12
G, I, J). *P < 0.05 compared with the respective CON groups; #P < 0.05 compared with WT-HFD group; $P < 0.05 compared with
the nonobese NFC group. Scale bar = 25 um. R.E., relative expression.
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Figure 2—ACE2 is upregulated in the myocardium in response to DIO, but loss of ACE2 results in worsened cardiac insulin resistance and
heart failure. Western blot analysis (A), representative IF staining images and quantification (B), and ACE2 activity assay (C) show myo-
cardial ACE2 upregulation in response to DIO. Ratio of dry heart weight to tibial length shows equivalent cardiac hypertrophy in the WT-
HFD and ACE2KO-HFD groups (D). Ex vivo working heart perfusions show decreased cardiac work in ACE2KO-HFD hearts compared with
WT-HFD hearts (E). Rates of glucose oxidation determined by ex vivo working heart perfusions show an insulin-induced increase in glucose
oxidation in WT-CON hearts (F). WT-HFD and ACE2KO-CON hearts show a decreased effect of insulin on glucose oxidation, which was
entirely blunted in ACE2KO-HFD hearts. Ex vivo working heart perfusions showing decreased palmitate oxidation rate in response to insulin
perfusion in WT-CON and ACE2KO-CON hearts with further equivalent reductions in WT-HFD and ACE2KO-HFD hearts (G). Pressure-
volume loop (H) analysis shows a greater increase in LVEDP (/) in ACE2KO-HFD mice, which is associated with a greater slowing of cardiac
relaxation shown by decreased LV dP/dt, (J) and Tau (Glantz) (K). Echocardiographic analysis of transmitral flow pattern and tissue Doppler
imaging show a greater increase in E/A ratio (L) and E/E’ ratio (M) in ACE2KO-HFD mice compared with WT-HFD mice. n = 6 (A); n =4 (B);
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Statistical Analysis

All data are presented as mean * SEM. All statistical
analyses were performed using SPSS version 22 software
(IBM Corporation, Chicago, IL). Between-group compari-
sons were made using a nonpaired Student ¢t test. The
effects of genotype and HFD were evaluated using one-
way ANOVA followed by the Student-Neuman-Keuls test
for multiple-comparison testing. In experiments with mul-
tiple treatments, one-way ANOVA was followed by multi-
ple comparisons using the Student-Neuman-Keuls test.
Statistical significance is recognized at P < 0.05.

RESULTS

Loss of ACE2 Increased EAT Inflammation in DIO
A marked upregulation of ACE2 was observed in the EAT
from WT mice subjected to DIO (Fig. 1A). Growth curves
and assessment of body composition (analyzed by quan-
titative magnetic resonance) showed that ACE2KO-HFD
mice had a smaller gain in total body weight and total fat
mass (Fig. 1B and Supplementary Fig. 1A and B) without
a differential effect on body composition as illustrated by
an equivalent increase in fat (Supplementary Fig. 1C) and
lean (Supplementary Fig. 1D) mass compositions compared
with WT-HFD mice. Despite the reduced obesity, ACE2KO-
HFD mice showed a greater increase in fasting plasma
glucose (Supplementary Fig. 1E) and increased glucose in-
tolerance (Fig. 1C and Supplementary Fig. 1F) compared
with WT-HFD mice. The results are consistent with the
previous observation of impaired glucose intolerance in
ACE2KO mice in response to a high-calorie diet (25).
Adipose tissue inflammation is linked to obesity-
induced insulin resistance (26). Although HFD feeding
resulted in an equivalent increase in EAT mass in WT
and ACE2KO mice (Supplementary Fig. 1G), histological
analysis by hematoxylin-eosin staining (Supplementary
Fig. 2A) and WGA staining (Supplementary Fig. 2B)
showed an uncoupling between obesity and adipose tissue
inflammation in ACE2KO-HFD EAT. Despite the reduced
obesity in ACE2KO-HFD mice, EAT showed increased
inflammatory cell infiltration (Supplementary Fig. 24),
crown-like structures (Supplementary Fig. 2C), and adipo-
cyte area (Supplementary Fig. 2B and D). The increased
crown-like structures in the EAT of ACE2KO-HED mice
suggests advanced inflammation and increased adipocyte
necrosis (27). IF staining for macrophage (M¢) cell
markers, including the F4/80 (M cell-surface marker),
CD11c [marker for the proinflammatory phenotype of
Md¢ that resembles M(interferon-y [[FN-y]) Md], and
CD206 [marker for the anti-inflammatory phenotype of
Md¢ that resembles M(interleukin-4 [IL-4]) Md], was
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carried out (Fig. 1D) to characterize the phenotypes of
Md in EAT (28,29). The EAT of WT-HED displayed
a smaller increase in the CD11c"/F4/80" and a greater
increase in the CD206"/F4/80" phenotypes of M¢ based
on IF staining (Fig. 1D-F). In contrast, EAT of ACE2KO-
HFD showed polarization of the M¢ phenotype, resulting
in increased CD11c¢"/F4/80" and decreased CD206"/F4/80"
phenotypes of Md (Fig. 1D-F) compared with WT-HED.
Correspondingly, the mRNA expression profile of ACE2KO-
HFD EAT showed a greater increase in the expression of
proinflammatory cytokine TNF-a, resulting in increased
TNF-a protein levels in ACE2KO-HFD EAT (Fig. 1G and
H). Gene expression analysis also showed a greater increase
in M(IFN-y)-associated inducible nitric oxide synthase
(iNOS), MCP-1, IL-1B, and IL-6 (Fig. 1I and Supplemen-
tary Fig. 1E and F) and a lesser increase in M(IL-4)-
associated anti-inflammatory cytokine IL-10 (Fig. 1J)
mRNA expression in ACE2KO-HFD EAT compared with
WT-HEFD EAT.

We also found increased ACE2 in EAT obtained from
the obese patients with HFPEF compared with the
nonobese NFC patients (Fig. 1K). BMI was 253 * 1.6
(n = 6) and 36.7 = 2.1 (n = 6) kg/m” (P < 0.05) in the
nonobese NFC and obese patients with HFPEF, respec-
tively. IF staining revealed increased resident M¢ in
EAT obtained from explanted diseased hearts from obese
patients (Fig. 1L). Of note, the M¢ in EAT from obese
patients showed a greater increase in the CD11c"/F4/80"
phenotype than in the CD206°/F4/80" phenotype (Fig.
1L-N). These results illustrate that ACE2 plays a dominant
role in suppressing EAT inflammation and in maintaining
glucose tolerance in the setting of obesity.

ACE2 Deficiency Worsened Cardiac Insulin

Resistance, Resulting in HFPEF

We next examined the effects of increased EAT inflam-
mation on HFPEF. Western blot analysis (Fig. 24), IF
staining (Fig. 2B), and activity assay (Fig. 2C) showed
upregulation of myocardial ACE2 in WT mice in response
to DIO. DIO resulted in equivalent pathological hypertro-
phy in WT and ACE2KO mice (Fig. 2D). Conversely, loss
of ACE2 resulted in decreased cardiac work when assessed
by ex vivo working heart perfusions (Fig. 2E). In WT-CON
hearts, perfusion with insulin resulted in a marked in-
crease in glucose oxidation (Fig. 2F). This increase was
suppressed in WT-HFD and ACE2KO-CON hearts, with
ACE2KO-HED hearts showing a severely blunted response
to insulin. Myocardial palmitate oxidation in WT and
ACE2KO hearts was similarly decreased in response to
insulin (Fig. 2G) with an equivalent loss of sensitivity to

n=8(C);n=12 (D-G, L, M); n =10 (H-K). *P < 0.05 compared with the respective CON groups; #P < 0.05 compared with WT-HFD group;
$P < 0.05 compared with WT-CON group. Scale bar = 25 um. LV dP/dt,, rate of LV pressure decrease; R.F.U., relative fluorescence unit;
R.R., relative ratio; Tau (Glantz), exponential decay of the ventricular pressure during isovolumic relaxation; wt, weight.



http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-0399/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-0399/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-0399/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-0399/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-0399/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-0399/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-0399/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-0399/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-0399/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-0399/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-0399/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-0399/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-0399/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-0399/-/DC1

90

ACE2 and Obesity-Induced Heart Disease

>

o
T

ANF/18S (R.E.)

o
2

Myocyte Cross-sectional

NADPH Oxidase Activity (A.U.)

o
~
1

o
N
1

WT

C

Diabetes Volume 65, January 2016

* 1.2+ " 8- u W 0.5+ %
l = o
i 094 46 g o4
£ 2 1 T03{
% 0.6+ o 4 B 1
= ] o < (.24
E Z T
& 95 = 27 3 0.1
4 o 4 (]
E |
0.0- 0- % 0.0-
ACE2KO WT ACE2KO WT ACE2KO WT ACE2KO
p-POH mecsesesssss  DAMPK (5172) SRessssmasss Adiponectin sme s s m e e
POH MeeSseuasnes AMPK S memcode EHERERNRENEE
1.8+ - ; 1.2-
— o bl
z: ] = 1.504 E
=1.2:] s So08| |+ s
E. | E. 1.004 " J%:.j
= g | <
@ I 0.6+ ¥ 0.50 S— 0.4
a ] = 5
& < <
0.0- 2 0.00- 0.0
ACE2KO wWT ACE2KO WT ACE2KO WT ACE2KO

JCON mm HFD

[ control I 100 uM DPI

4-

i D.H

CON HFD CON HFD

WT

ACEZKO

K

50+

£ 304
g: 20 ;
3101 >

Cardiac TAG

Bl .

N o
WT-CON WT-HFD
ACE2KO-CON ACE2KO-HFD

[¢

DHE Fluorescence (A.U.)

Q
L

o7

1 CON mm HFD
4-

i BI

WT ACE2KO

w
1

N
1

=
1

Figure 3—Loss of ACE2 results in cardiac steatosis, oxidative stress, and modulation of molecular signaling pathways in response to DIO.
Increased mRNA expression of ANF (A), BNP (B), B-MHC (C), and a-skeletal actin (D) shows heart failure progression in ACE2KO-HFD
hearts in response to DIO. Western blot analysis shows a greater decrease in phosphorylation of Akt in ACE2KO-HFD hearts compared
with WT-HFD hearts (E). Phosphorylation of PDH was increased in WT-HFD hearts and further increased in ACE2KO-HFD hearts (F).
Phosphorylation of AMPK was increased in WT-HFD hearts but decreased in ACE2KO-HFD hearts (G). Western blot analysis (H) and
representative IF images (/) show decreased adiponectin levels in WT-HFD hearts. ACE2KO-CON hearts showed reduced basal levels of
myocardial adiponectin, which remained low in response to DIO. Representative WGA-stained images (/) and myocyte cross-sectional area
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insulin in both genotypes with DIO (Fig. 2G). Assessment
of total ATP (Supplementary Fig. 3A) and percent ATP
production (Supplementary Fig. 3B) showed that ATP
production originating from glucose oxidation was stim-
ulated by insulin in WT-CON and ACE2KO-CON hearts
but was partially and almost completely suppressed in
WT-HFD and ACE2KO-HED hearts, respectively. LV pressure-
volume analysis (Fig. 2H) showed worsened diastolic
dysfunction, as illustrated by a greater increase in LV
end-diastolic pressure (LVEDP) (Fig. 2I) with preserved
systolic function (Supplementary Fig. 3C) in ACE2KO-
HFD mice than in WT-HFD mice. Worsened diastolic
dysfunction in the ACE2KO-HFD mice was mainly a re-
sult of the impaired active relaxation, as evidenced by
a greater decrease in the LV dP/dt,;, (Fig. 2J) and in-
creased Tau (Fig. 2K and Supplementary Fig. 3D), the ex-
ponential time constant of the decay in LV pressure during
isovolumic relaxation, coupled with an equivalent increase
in passive stiffness as reflected in the end-diastolic pressure-
volume relationship (EDPVR) (Supplementary Fig. 3E).
Transmitral flow and tissue Doppler imaging revealed mark-
edly increased E/A and E/E’ ratios consistent with diastolic
dysfunction in the ACE2KO-HFD mice (Fig. 2L and M). The
mRNA expression profile of molecular markers of cardiac
diseases showed a greater increase in the expression of atrial
natriuretic factor (ANF) (Fig. 3A), brain natriuretic peptide
(BNP) (Fig. 3B), B-myosin heavy chain (3-MHC) (Fig. 30),
and oa-skeletal musce actin (Fig. 3D) in ACE2KO-HFD
hearts compared with WT-HFD hearts. These results clearly
demonstrate that loss of ACE2 enhances the susceptibility
of the heart to obesity-induced heart disease.

Molecular Mechanism of the Cardiac Insulin
Resistance and HFPEF in ACE2KO-HFD Hearts
Western blot analyses of various metabolic enzymes and
metabolic signaling pathways (30,31) were carried out in
the insulin-perfused hearts to elucidate the mechanism of
myocardial insulin resistance in ACE2KO-HFD hearts. Of
note, insulin-mediated phosphorylation of Akt was de-
creased in the WT-HFD hearts, a response further exacer-
bated in ACE2KO-HFD hearts, suggesting a marked cardiac
insulin resistance in DIO in ACE2-deficient mice (Fig. 3E).
Decreased phosphorylation of Akt in ACE2KO-HFD hearts
was associated with increased pyruvate dehydrogenase
kinase (PDK) 4 protein levels (Supplementary Fig. 4A),
with no difference in PDK2 levels (Supplementary Fig.
4B), and increased phosphorylation of pyruvate dehydroge-
nase (PDH) (Fig. 3F), a rate-limiting enzyme in carbohydrate
oxidation. Phosphorylation of AMPK was increased in
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WT-HFD hearts, whereas ACE2KO-HFD hearts showed de-
creased phosphorylation of AMPK (Fig. 3G). We assessed
myocardial levels of adiponectin, an adipokine that regu-
lates inflammation and cardiac metabolism (32,33). West-
ern blot and IF analyses showed decreased myocardial
adiponectin levels in WT hearts in response to DIO (Fig.
3H and I). ACE2KO-CON hearts showed reduced basal
levels of myocardial adiponectin, which remained low in
response to DIO (Fig. 3H and I), whereas the increase in
cardiomyocyte cross-sectional area was equivalent in WT
and ACE2KO mice in response to HFD feeding (Fig. 3J).
There was no difference in the protein levels of sirtuin
(SIRT)-1 and SIRT-4 (Supplementary Fig. 4C and D),
whereas SIRT-3 protein levels were decreased (Supple-
mentary Fig. 4E) and peroxisome proliferator—activated
receptor 7y coactivator protein levels were increased (Sup-
plementary Fig. 4F) in WT-HFD, ACE2KO-CON, and
ACE2KO-HED hearts compared with WT-CON hearts. In
addition, other than reduction in the ACE levels in WT
hearts in response to DIO, there was no noticeable differ-
ence in the protein levels of AT1R, ACE, and Mas receptor
in WT and ACE2KO hearts (Supplementary Fig. 4G-I).
Obesity is closely linked to cardiac steatosis and lipotox-
icity, which are key pathogenic events in driving heart
disease in obese states (26,34). Myocardial triacylglycerol
(TAG) levels showed a marked increase in ACE2KO-HFD
hearts compared with WT-HFD hearts (Fig. 3K) as con-
firmed by Oil Red O staining, which showed markedly in-
creased myocardial lipid accumulation in ACE2KO-HFD
hearts (Fig. 3L). Increased cardiac steatosis was associated
with increased oxidative stress as shown by increased
NADPH oxidase activity (Fig. 3M) and dihydroethidium
(DHE) fluorescence (Fig. 3N and O), predisposing the
ACE2KO-HFD hearts to lipotoxicity. There was no dif-
ference in the mRNA expression of proinflammatory
cytokines, including TNF-o, MCP-1, and IL-6, and an
equivalent increase in IL-13 between the ACE2KO-HFD
and WT-HFD hearts (Supplementary Fig. SA-D). Picrosirius
red staining showed an equivalent increase in myocardial
fibrosis in ACE2KO-HFD hearts compared with WT-HFD
hearts, which was consistent with the equivalent increase in
passive stiffness (EDPVR) (Supplementary Fig. 5E and F).

Ang 1-7 Treatment Decreased EAT Inflammation,
Corrected Signaling Pathways and Lipotoxicity, and
Rescued Heart Disease in ACE2KO-HFD Mice

Ang 1-7 treatment for 4 weeks reduced DIO-induced glu-
cose intolerance in ACE2KO mice (Supplementary Fig. 6A
and B) without affecting body weight (Supplementary Fig. 6C).

(J) show equivalent cardiac hypertrophy in WT-HFD and ACE2KO-HFD mice. Biochemical analysis showed increased cardiac TAG levels
(K), and Oil Red O staining showed increased intramyocardial lipid accumulation (L) in ACE2KO hearts in response to DIO. NADPH oxidase
activity (M), representative DHE staining images (N), and quantification of DHE fluorescence (O) show increased oxidative stress in
ACE2KO-HFD hearts compared with WT-HFD hearts. n =12 (A-D); n=6 (E-H);n=4(, J, L, N, O); n =10 (K, M). *P < 0.05 compared with
the respective CON groups; #P < 0.05 compared with the WT-HFD group; $P < 0.05 compared with WT-CON group. Scale bar = 25 um
() and 100 wm (N). A.U., arbitrary unit; p, phosphorylated; R.E., relative expression; R.R., relative ratio; T, total; wt, weight.
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Figure 4—Ang 1-7 treatment ameliorates EAT inflammation, modulates molecular signaling pathways, and decreases cardiac steatosis
and oxidative stress, resulting in the prevention of heart failure in ACE2KO-HFD mice. Representative IF images for F4/80 and CD11c (A)
and CD206 (B) and M1 and M2 phenotypes of M¢ (C and D) show markedly increased inflammation in the ACE2KO-HFD EAT, whereas
Ang 1-7 treatment entirely prevented EAT inflammation (A-D). Gene expression analysis and ELISA show increased expression of TNF-a
[mMRNA (E) and protein (F)], INOS (G), MCP-1 (H), IL-18 (/), IL-6 (J), and IL-10 (K) mRNA in ACE2KO-HFD EAT, which was reversed by the
Ang 1-7 treatment. Ang 1-7 treatment reversed the changes in the phosphorylation of Akt (L), PDH (M), and AMPK (N) and markedly
increased myocardial adiponectin levels as shown by Western blot analysis (O) and representative IF images (P). Representative WGA
staining images (P) and myocyte cross-sectional area (Q) show Ang 1-7-mediated attenuation of cardiac hypertrophy in ACE2KO-HFD
mice. Oil Red O staining revealed decreased intramyocardial lipid accumulation (R), and biochemical analysis showed decreased cardiac
TAG levels (S) in Ang 1-7-treated ACE2KO-HFD hearts. NADPH oxidase activity showed decreased oxidative stress in Ang 1-7-treated
ACE2KO-HFD hearts (T). n =4 (A-D, P-R);n =12 (E, G-K); n =8 (F); n =6 (L-0); n =10 (S, T). *P < 0.05 compared with all the other groups.
Scale bar =25 pm (A, B, P). A.U., arbitrary unit; DPI, diphenyleneiodonium; p, phosphorylated; R.E., relative expression; R.R., relative ratio;
T, total; wt, weight.
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Body composition was analyzed by quantitative magnetic
resonance, which showed a reduction in fat mass (Supple-
mentary Fig. 6D) but not lean mass (Supplementary Fig.
6E) in ACE2KO-HFD mice in response to Ang 1-7. Ad-
verse remodeling of EAT in the ACE2KO-HFD group was
markedly corrected in response to Ang 1-7, leading to
reduced inflammatory cell infiltration and adipocyte size
(Supplementary Fig. 4F-I) concomitant with reduced
CD11c¢*/F4/80" and CD206°/F4/80* M¢ (Fig. 4A-D) and
decreased expression of pro- and anti-inflammatory cyto-
kines TNF-a (mRNA and protein levels [Fig. 4E and F]),
iNOS, MCP-1, IL-1B, IL-6, and IL-10 (Fig. 4G-K). The
anti-inflammatory effects closely linked to Ang 1-7 treat-
ment reversed the changes in phosphorylation of Akt (Fig.
4L), PDH (Fig. 4M), and AMPK (Fig. 4N) consistent with
improved myocardial response to insulin. Of note, Ang 1-7
treatment markedly increased the myocardial adiponectin
levels confirmed by Western blot analysis (Fig. 40) and IF
staining (Fig. 4P). Assessment of cardiomyocyte cross-
sectional area confirmed that Ang 1-7 treatment medi-
ated a reduction in cardiac hypertrophy in ACE2KO-HFD
mice (Fig. 4Q).

Oil Red O staining (Fig. 4R) and biochemical analysis of
TAG (Fig. 4S) showed that Ang 1-7 treatment also atten-
uated myocardial lipid accumulation in ACE2KO-HFD
hearts, leading to reduced cardiac steatosis (Fig. 4R and S).
Ang 1-7 treatment reduced myocardial oxidative stress and
fibrosis as evidenced by decreased NADPH oxidase activity
and DHE fluorescence along with reduced myocardial col-
lagen fraction (Fig. 4T and Supplementary Fig. 7A-D). Ang
1-7-mediated attenuation of EAT inflammation, correc-
tion of altered signaling, and reduced lipotoxicity prevented
DIO-induced heart failure in the ACE2KO mice and reduced
mRNA expression of cardiac disease markers, including
ANF, BNP, a-skeletal actin, and B-MHC (Supplementary
Fig. 7E-H). LV pressure-volume loop analysis (Supple-
mentary Fig. 4I) showed reduced LVEDP (Supplementary
Fig. 7J), suggesting improved diastolic function in the
Ang 1-7-treated ACE2KO-HFD mice, which was associ-
ated with improved active relaxation (Tau) (Supplementary
Fig. 7K) and passive stiffness (EDPVR) (Supplementary
Fig. 7L).

DISCUSSION

Obesity is strongly associated with HFPEF, a condition
with high mortality and morbidity and limited therapy
(1-4). Rodents exposed to DIO are generally accepted as
a valid model to mimic human obesity (5-7). We showed
that ACE2 was upregulated in murine and human EAT in
association with obesity and cardiac dysfunction. Loss
of ACE2 resulted in multifactorial alterations, including
pathological hypertrophy, lipotoxicity, and cardiac metab-
olism, in the setting of EAT inflammation (Supplementary
Fig. 8). We found increased glucose intolerance, which has
been linked to pathological cardiac hypertrophy (35,36),
in ACE2KO-HFD mice despite reduced obesity. DIO in WT
mice resulted in increased CD206*/F4/80" resident Md in
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EAT, which was associated with gene expression linked to
the M(IL-4) M¢ phenotype. In contrast, ACE2KO-HFD
showed polarization of M¢ phenotype, resulting in in-
creased resident CD11c"/F4/80" Md, which then resulted
in increased mRNA expression of proinflammatory cyto-
kines linked with the M(IFN-y) Md phenotype (Supple-
mentary Fig. 8). Although ACE2 expression in bone
marrow can regulate M polarization and adipose tissue
inflammation (37), we show a novel role of ACE2-regulated
Mo polarization and EAT inflammation in the progres-
sion of HFPEF. Of note, human EAT obtained from obese
patients with HFPEF also showed a marked increase
in EAT inflammation and resident CD11c"/F4/80" Md.
These results illustrate a fundamental role of Md in ad-
ipose tissue inflammation and the regulation of insulin
sensitivity (28) as illustrated by the increased insulin
sensitivity associated with deletion of M1-mediated in-
flammatory marker genes (e.g., TNF-o) and the ablation
of CD11c" cells (38,39).

Ang 1-7 treatment prevented DIO-mediated EAT in-
flammation and cardiac dysfunction in the ACE2 null
background. Ang 1-7 effects are predominantly mediated
by the activation of its endogenous G-protein-coupled
receptor Mas, which is widely expressed (14,40). The cur-
rent results show a critical role of ACE2 in the regulation
of M¢ phenotypes. Ang II binding and activation of AT1R
polarizes M¢ (41), whereas Ang 1-7/MasR axis activation
decreases the expression of the proinflammatory cyto-
kines, including TNF-a and IL-6 (42). By regulating the
balance of RAS toward Ang 1-7/MasR axis activation,
ACE2 is expected to decrease the polarization of Md.
However, the exact mechanism of the role of RAS in
Md polarization remains uncertain and warrants detailed
investigation.

EAT thickness and inflammation in obesity is associ-
ated with the progression of cardiac dysfunction (26,43-
45). Common pathways involved in the pathogenesis of
obesity and cardiovascular disease include insulin resis-
tance and lipotoxicity. ACE2KO-HFD mice showed in-
creased cardiac steatosis and lipotoxicity in response to
DIO. Cardiac steatosis and lipotoxicity are associated with
worsening heart failure in obese men without diabetes
(26,34). We also found increased myocardial insulin
resistance in ACE2KO-HFED hearts, which was associated
with worsened global insulin signaling, decreased myocar-
dial adiponectin levels, and decreased phosphorylation of
AMPK with associated diastolic dysfunction and heart
disease. Myocardial insulin resistance is well known to
be associated with the heart failure, although the cause-
and-effect relationship in the current study needs further
investigation (46). Insulin-perfused ACE2KO-HFD hearts
showed decreased phosphorylation of Akt, increased
PDK4, and phosphorylation and inactivation of PDH in-
dicative of impaired myocardial insulin signaling resulting
in decreased glucose oxidation (47). AMPK acts as a met-
abolic master switch regulating several intracellular sys-
tems, including the cellular uptake of glucose, B-oxidation
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of fatty acids, and biogenesis of GLUT4; thus, decreased
phosphorylation of AMPK (inactivation) may have con-
tributed to the cardiac insulin resistance in ACE2KO-
HFD hearts. Phosphorylation of AMPK in the healthy
heart is partly regulated by adiponectin, an adipokine ex-
clusively produced in the adipocytes (32,48). Adiponectin is
important for maintaining heart function in the setting of
DIO (33). The present observation of reduced myocardial
adiponectin in the ACE2KO-HFD model may be an impor-
tant link between the pathological remodeling of EAT and
adverse effects on the heart. Of note, ACE2KO-HFD hearts
showed a greater increase in impaired active relaxation
with equivalent passive stiffness than did the WT-HFD
hearts, which could be attributed to enhanced metabolic
dysfunction and equivalent fibrosis in these hearts. Of
note, Ang 1-7 treatment reversed pathological changes ob-
served in ACE2KO-HFD EAT and hearts. These results are
consistent with a pivotal role of the ACE2/Ang 1-7 axis in
cardiovascular (13,21) and diabetic kidney (49,50) diseases.

The current data show that Ang 1-7-mediated cardio-
protection against obesity-induced cardiac dysfunction
is multifactorial and mediated by improved molecular sig-
naling and decreased myocardial fibrosis, lipotoxicity, and
EAT inflammation. Ang 1-7 reduces glucose intolerance
and insulin resistance and prevents diabetic cardio-
myopathy in the obese type 2 diabetic model (13,51).
The results illustrate novel effects of Ang 1-7 in increas-
ing myocardial adiponectin levels and mediating anti-
inflammatory effects on EAT and beneficial effects on
heart function.

In conclusion, we found a novel role of ACE2 in obesity
where ACE2 negatively regulates obesity-induced EAT
inflammation, cardiac insulin resistance, and alterations
in cardiac metabolism. Of note, Ang 1-7 treatment im-
proves glucose intolerance, EAT inflammation, and cardiac
insulin resistance and prevents the HFPEF phenotype in
DIO. Enhancing ACE2 or Ang 1-7 action represents a po-
tential therapeutic option for obesity and its associated
heart disease.
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