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Abstract

Heart failure remains the most common cause of death and disability, and a major economic 

burden, in industrialized nations. Physiological, pharmacological, and clinical studies have 

demonstrated that activation of the renin-angiotensin system is a key mediator of heart failure 

progression. Angiotensin converting enzyme 2 (ACE2), a homologue of ACE, is a 

monocarboxypeptidase that converts angiotensin II (Ang II) into angiotensin 1–7 (Ang 1–7) 

which, by virtue of its actions on the Mas receptor, opposes the molecular and cellular effects of 

Ang II. ACE2 is widely expressed in cardiomyocytes, cardiofibroblasts, and coronary endothelial 

cells. Recent preclinical translational studies confirmed a critical counter-regulatory role of 

ACE2/Ang 1–7 axis on the activated renin-angiotensin system that results in heart failure with 

preserved ejection fraction. While loss of ACE2 enhances susceptibility to heart failure, increasing 

ACE2 level prevents and reverses the heart failure phenotype. ACE2 and Ang 1–7 have emerged 

as a key protective pathway against heart failure with reduced and preserved ejection fraction. 

Recombinant human ACE2 has been tested in phase I and II clinical trials without adverse effects 

while lowering and increasing plasma Ang II and Ang 1–7 levels, respectively. This review 

discusses the transcriptional and post-transcriptional regulation of ACE2 and the role of the 

ACE2/Ang 1–7 axis in cardiac physiology and in the pathophysiology of heart failure. The 

pharmacological and therapeutic potential of enhancing ACE2/Ang 1–7 action as a novel therapy 

for heart failure is highlighted.
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The renin-angiotensin system (RAS) is a peptidergic system that functions in the 

homeostatic control of the cardiovascular and renal systems and in regulating extracellular 

fluid volume. Inhibition of the RAS plays a central role in alleviating the increased 

morbidity and mortality of patients with heart failure (HF).1, 2 The RAS consists of a series 

of enzymatic reactions that result in generation of angiotensin (Ang) II. In the first step, 

renin (an aspartyl proteinase secreted by kidney into the circulation) cleaves hepatic peptide 

angiotensinogen to produce Ang I in the blood. Ang I is then hydrolyzed by angiotensin-

converting enzyme (ACE) in the second step, producing the octapeptide Ang II. This 

biologically active peptide acts on Ang II type 1 and type 2 receptors (AT1R and AT2R) 

(Figure 1A). Ang II promotes vasoconstriction, inflammation, salt and water reabsorption, 

and oxidative stress via the activation of AT1R.3 These detrimental effects of Ang II/AT1R 

have encouraged the quest for a counter-regulatory axis of the activated RAS. RAS was 

initially thought to function as a systemic entity not localized to any specific tissue. 

However, this notion of systemic RAS was challenged by observations that many tissues are 

capable of synthesizing the key components of RAS,4–6 including heart,4, 7, 8 kidney,9 

vasculature,9 pancreas,6, 10 retina,11, 12 brain,6, 13 and others. The local RAS could produce 

peptides at the tissue level that show autocrine effects (on the cells where they are being 

produced), paracrine effects (on neighboring cells), or endocrine effects (on a distant organ 

or tissue; via systemic circulation).6, 14

Our conception of the RAS family has seen substantial changes with the identification of 

angiotensin-converting enzyme 2 (ACE2), a homologue of ACE. ACE2 is a 

monocarboxypeptidase that degrades Ang I into a nonapeptide, Ang 1–9 and Ang II into a 

heptapeptide, Ang 1–7 (Figure 1A). The discovery of ACE2, Ang 1–9, and Ang 1–7 

unravels a distinct enzymatic pathway for degradation of Ang I and Ang II as endogenous 

negative regulation of RAS activation. Moreover, ACE2 has been identified as an important 

RAS regulator capable of mitigating the deleterious actions mediated by Ang II and AT1R. 

This is of particular importance in pathological conditions where the RAS is activated. Ang 

1–7 is a biologically active peptide exerting a wide array of actions, many of which are 

opposite to those attributed to Ang II.15–18 In 2003, an endogenous orphan receptor, Mas 

(MasR), was identified as the Ang 1–7 receptor. A779, a MasR antagonist, has been shown 

to block the majority of Ang 1–7 effects.17, 19–22 Ang 1–9 has also shown beneficial 

biological effects via AT2R that result in cardioprotection.23–26 Thus, while ACE/Ang II/

AT1R is a well-established axis of the RAS, the ACE2/Ang 1–7/MasR and ACE2/Ang 1–

9/AT2R axes have emerged as physiological antagonists that counter-regulate the activate 

RAS.16, 27–31 Taken together, the cardioprotective effects of ACE2 can be attributed to i) 

degradation of Ang I to Ang 1–9, limiting the availability of substrate for ACE action, ii) 

degradation of Ang II, limiting its detrimental effects, and iii) generation of Ang 1–7, 

exerting its cardioprotective effects. Several lines of evidence suggest that ACE2 level and/or 

activity balances two different arms. Decreased ACE2 activity results in activation of the 
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Ang II/AT1R axis, contributing to increased progression of heart disease. Increased ACE2 

level/activity leads to activation of ACE2/Ang 1–9 and ACE2/Ang 1–7 axes, leading to 

protection against heart disease (Figure 1B). In this review, we highlight the role of 

ACE2/Ang 1–7 in counter-regulation of Ang II actions, different approaches to manipulating 

ACE2/Ang 1–7 levels, and the potential of enhancing ACE2 action as a therapy for HF.

 ACE2: Discovery, biochemistry, and regulation

 a. Discovery of ACE2 and its differences from ACE

ACE2 or ACE homologue (ACEH) was discovered as a zinc metalloproteinase by two 

different groups in 2000. ACE2 was initially identified from human HF and lymphoma 

cDNA libraries32, 33 and was later shown to serve as a receptor for the SARS coronavirus.34 

It was found to possess an apparent signal peptide, a transmembrane domain, and a single 

metalloproteinase active site containing an HEXXH zinc-binding domain.32, 33 ACE2 is a 

type I transmembrane protein with an extracellular N-terminal domain containing the 

catalytic site and an intracellular C-terminal tail. Similar to ACE, the catalytic site of ACE2 

is exposed (an ‘ectoenzyme’) to circulating vasoactive peptides.35 Expression of a soluble 

truncated form of ACE2 in CHO cells produced a glycoprotein of 120 kDa that was able to 

cleave Ang I and II but not bradykinin.33 Other critical residues typical of the ACE family 

are conserved in ACE2. Tipnis et al. discovered that the ACE2 gene contains 18 exons, with 

several having considerable size similarity to the first 17 exons of human ACE.33 The 

metalloproteinase catalytic domains of ACE2 and ACE are 42% identical according to the 

findings of Donoghue et al.32 In spite of such similarity though, unlike ACE, ACE2 does not 

convert Ang I to Ang II. In fact, ACE2 activity is inhibited by EDTA but is unaffected by 

ACE inhibitors such as captopril and Lisinopril.32, 33, 36 Further research revealed a major 

difference in enzymatic actions of ACE and ACE2. ACE acts a dipeptidyl carboxypeptidase 

(removing a dipeptide from the C-terminus of substrate) whereas ACE2 acts as a mono-

carboxypeptidase (removing a single amino acid) that degrades Ang I to generate the 

nonapeptide Ang 1–9 and Ang II to generate the heptapeptide Ang 1–7.32, 33 Later studies 

focused on ACE2 purification and characterization of its catalytic activity, showing a pH 

optimum of 6.5 and enhancement of ACE2 activity by monovalent anions, including Cl− and 

F−, but not Br−.37 This is consistent with the activity of ACE.38 However, ACE2 was later 

shown to possess one Cl− binding site compared to two Cl− sites in ACE.39 Out of 126 

biological peptides tested with ACE2 using LC-MS, ACE2 hydrolyzed three peptides with 

high efficiency: Ang II, apelin-13, and dynorphin A 1–13. ACE2 also showed a preference 

for cleaving C-terminal amino acids with peptides ending in Pro-X, where X is a 

hydrophobic amino acid.38, 40 This cleavage preference of ACE2 was supported by a key 

experiment in which a dipeptide, Pro-Phe, completely inhibited ACE2 activity at 180 μM 

with Ang II as the substrate.41 In a search for the active site residues of ACE2, site-directed 

mutagenesis revealed that Arg273 is critical for substrate binding and its replacement causes 

complete loss of enzyme activity.39

The difference in ACE and ACE2 enzymatic activity became more evident upon the 

discovery that human ACE2 catalytic efficiency is 400-fold higher with Ang II as a substrate 

than with Ang I.38, 42 To further unravel the biological role and importance of ACE2, several 
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ACE2 inhibitors were designed and synthesized via substrate-based43 and structure-based44 

pharmacophore design and virtual screening. MLN-4760, a potent and selective inhibitor 

developed with substrate-based design, has been a key tool for in vivo and in vitro studies.43 

In the last 15 years, distinct roles of ACE2 have been discovered ranging from catalytic 

activities with various substrates, functional SARS coronavirus receptor, and an amino acid 

transporter.34, 40, 45, 46 ACE2 was initially thought to be expressed only in heart, kidney, and 

testes,33 but was eventually found to be widely expressed in various organ systems including 

the cardiovascular system, kidneys, lungs, and brain, in which it exerts important actions to 

maintain cardiovascular homeostasis.47–52 In the heart, ACE2 is localized to cardiomyocytes 

(contracting cardiac muscle cells), cardiac fibroblasts, and the coronary vascular 

endothelium.53, 54 MasR is also present on cardiomyocytes, cardiac fibroblasts, and 

endothelial cells.19, 55–57

 b. Proteolytic processing, transcriptional, and post-transcriptional regulation of ACE2

Various molecules are shed from cell surfaces by the action of a disintegrin and 

metalloproteinase (ADAM) 17, also known as tumor necrosis factor-α converting enzyme 

(TACE).58–60 ADAM17-mediated proteolysis of ACE2 releases an enzymatically active 

ectodomain from the cell surface, generating a soluble, active form of the enzyme. Lambert 

et al. confirmed the ectodomain shedding of heterologously expressed ACE2 in HEK293 

cells and endogenously expressed ACE2 in Huh7 cells. Small interfering RNA (siRNA) 

against ADAM17 reduced the shedding of ACE2 and ADAM17 overexpression increased it, 

providing direct evidence of ADAM17-mediated ectodomain shedding of ACE2. Lambert et 

al. later discovered that calmodulin, a ubiquitous calcium binding protein, associates with 

ACE2 and prevents its shedding, an action inhibited by calmodulin inhibitors.61 However, 

increased ACE2 shedding mediated by calmodulin inhibitors was only partially blocked by 

metalloproteinase inhibitor, suggesting the involvement of alternate proteolytic pathways not 

yet identified.61 The initial observation of ACE2 shedding was further confirmed and shown 

to be a constitutive and regulated phenomenon in various cell types including CHO cells, 

fibroblasts, 3T3-L1 adipocytes, neurons, cardiomyocytes, and proximal tubular cells.53, 62–64 

In particular, we identified a positive feedback mechanism in the RAS whereby Ang II 

facilitates the loss of its negative regulator, ACE2.53 Ang II action on AT1R leads to 

phosphorylation (mediated by p38 mitogen-activated protein kinase [MAPK]) and activation 

of ADAM17, resulting in increased ACE2 shedding (Figure 2).53, 65 Shedding of membrane-

bound ACE2 is likely responsible for the loss of myocardial ACE266, 67 and elevation in 

plasma ACE2 activity in HF that correlates with worsened prognosis.68, 69 The biological 

and clinical significance of ACE2 ectodomain shedding is yet to be fully characterized. The 

inhibition of ectodomain shedding of ACE2 by manipulating the enzyme activity of 

ADAM17 could have therapeutic potential in HF.

A reporter system using the 3′-UTR of an ACE2 transcript was used to determine the 

functionality of putative microRNA (miRNA) binding sites identified in vitro. In a luciferase 

reporter assay containing ACE2 3′-UTR, miR-421 strikingly decreased ACE2 protein levels 

while loss of miR-421 reversed these effects, implying that miR-421 modulates ACE2 

expression via post-translational repression rather than degradation of mRNA transcripts. 

This identified miR-421 as a potential regulator of ACE2 and was the first demonstration of 

Patel et al. Page 4

Circ Res. Author manuscript; available in PMC 2017 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



post-transcriptional regulation of ACE2.70 ACE2 mRNA expression is also regulated by 

Sirtuin 1 (SIRT1). Energy stress by hypoxia and adenosine monophosphate kinase (AMPK) 

activation by 5-amino-4-imidazolecarboxamide riboside (AICAR) increase the cellular ratio 

of NAD+ to NADH and increase ACE2 expression.71 SIRT1, in the presence of a possible 

but unknown cofactor, binds to the promoter region of ACE2 and this binding is promoted 

by AICAR. AICAR-induced ACE2 expression is inhibited by an inhibitor of SIRT1, 

providing strong evidence for the SIRT1-mediated transcriptional regulation of ACE2 under 

conditions of energy stress (Figure 2).71 Similarly, apelin also increases ACE2 promoter 

activity in vitro and upregulates ACE2 expression in failing hearts in vivo (Figure 2).72 

Therapeutically, agents that increase ACE2 expression (SIRT1 activators, apelin) or 

inhibitors of negative regulators of ACE2 (TACE or miR-421) could be utilized to enhance 

ACE2 activity and counteract cardiovascular diseases including HF.

 Role of ACE2/Ang 1–7 in HF

Heart failure is a growing epidemic with high morbidity and mortality at an international 

scale. Acute and chronic HF is characterized by activation of several signaling pathways 

associated with pathological hypertrophy and maladaptive ventricular remodeling. HF is 

caused by damage to or loss of cardiomyocytes and contributes to diminished systolic 

performance and diastolic dysfunction in the failing heart.73, 74 HF involves changes in 

cardiac structure, myocardial composition, myocyte deformation, and multiple biochemical 

and molecular alterations, collectively referred to as adverse myocardial remodeling. Despite 

improvements in medical and surgical therapies, cardiac diseases remain the leading cause 

of death in North America, with ischemic and hypertensive heart disease as the leading 

cause of HF.75–77

Diabetes mellitus and obesity are major causes of morbidity and mortality in all parts of the 

world including North America.78 Diabetes mellitus is characterized by insulin insufficiency 

that is frequently associated with severe cardiovascular complications and increased risk for 

hypertension, HF, and myocardial infarction (MI).79–81 Obesity itself is an independent risk 

factor for development of HF with preserved ejection fraction (HF-pEF), independent of 

other comorbid conditions.82–84 The rising global tide of obesity and diabetes will likely 

contribute further to the increasing prevalence of systolic and diastolic HF.78, 80, 85–87 

Although the mechanisms underlying the intertwined relationship among diabetes, obesity, 

hypertension, and cardiovascular events remain to be fully defined, major culprits that have 

been implicated are cardiovascular inflammation, oxidative stress, mitochondrial 

dysfunction, and insulin resistance, all closely linked with abnormalities in the RAS.88–91

Neurohormonal changes such as activation of the RAS and increased Ang II levels play a 

pivotal role in adverse myocardial remodeling and progression to HF.2, 92, 93 Indeed, 

pharmacological antagonism of the RAS using ACE inhibitors (ACEi) or AT1R blockers 

(ARB) is a cornerstone of current medical therapy for human HF, including diabetic 

cardiomyopathy.75, 94 While these pharmacotherapies for HF provide benefits, patients with 

HF continue to be plagued by clinical deterioration, high morbidity, and mortality.77 

Irrespective of the capacity of ACE inhibitors to inhibit ACE action, Ang II levels can 

remain elevated in optimally treated HF patients. About 50% of the patients using ongoing 

Patel et al. Page 5

Circ Res. Author manuscript; available in PMC 2017 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ACEi therapy exhibit elevated levels of Ang II, the result of activation of mast cell 

chymase.95–98 Therefore, there is an urgent need to identify alternative strategies to 

minimize the detrimental effects of Ang II and treat HF.

ACE2, by virtue of its action on Ang I and Ang II, is nature’s endogenous ACE inhibitor at 

the cellular level (Figure 3). Ang 1–9, the product of ACE2 degradation of Ang I, has 

recently shown promising anti-hypertrophic, anti-fibrotic, and anti-hypertensive effects. 

These beneficial effects result in cardioprotection against hypertension and MI.23–26 

Adenoviral delivery of Ang 1–9 in H9c2 cardiomyocytes has shown anti-hypertrophic 

effects comparable to adenoviral Ang 1–7 delivery.23 Moreover, RhoA/Rho kinase inhibition 

has shown potent anti-hypertensive effects that were mediated via the upregulation of 

vascular and plasma ACE2 and increased plasma Ang 1–9 levels, without an increase in Ang 

1–7 levels.26 This suggests a potential role for Ang 1–9 in the anti-hypertensive effects of 

RhoA/Rho-kinase inhibition.

Both Ang I and Ang II can function as the preferred substrate for ACE2. Studies using 

recombinant human ACE2 (rhACE2) and ACE2 purified from sheep tissues showed Ang II 

as a preferred substrate for ACE2.33, 38, 41, 67, 99, 100 In sheep, conversion from Ang I to Ang 

1–9 was not detected while the proximal tubules contained robust ACE2 activity that 

converted Ang II to Ang 1–7.101 In contrast, changes in ACE2 correlated with plasma Ang 

1–9 levels in rats.102 In a recent study Ye et al. demonstrated that rhACE2 generated Ang 1–

7 and Ang 1–9 while recombinant murine ACE2 generated predominantly Ang 1–7.103 In 

addition, the therapeutic effects of rhACE2 is highly dependent on Ang 1–7 action in 

rodents30, 67, 100 and in human studies rhACE2 clearly lowered plasma Ang II levels 

resulting in increased plasma Ang 1–7 levels.104–106 However, it remains possible that the 

contribution of Ang 1–9 in ACE2’s beneficial effects may be underestimated and requires 

further investigation with a clear emphasis on human studies.

Ang 1–7 activates MasR and exerts various effects, the majority of which antagonize Ang 

II’s effects.15, 20 These effects include i) activation of the phosphatidylinositol 3-kinase 

(PI3K)-Akt-endothelial nitric oxide synthase (eNOS) pathway; ii) inhibition of protein 

kinase C (PKC)-p38 MAPK pathways and iii) inhibition of collagen expression to limit 

cardiac fibrosis (Figure 3).19, 107, 108 To understand the relative contributions of inhibiting 

the Ang II/AT1R axis and activating the Ang 1–7/MasR axis to cardioprotective effects, we 

studied the effects of irbesartan and Ang 1–7 supplementation in pressure-overload-induced 

HF in ACE2 knockout mice.30 We found functional redundancy in the anti-fibrotic and anti-

hypertrophic effects and suppression of pathological signaling. The cardioprotective effects 

of irbesartan and Ang 1–7 were equivalent, suggesting similar significance of both axes.

 a. Role of ACE2/Ang 1–7 in hypertension

Activated RAS and Ang II are established key mediators of hypertension, therefore ACE2 is 

hypothesized to be a potent modulator of blood pressure and its deficiency leads to 

hypertension. In a preclinical model of hypertension, ACE2 gene maps to a defined 

quantitative trait locus on the X-chromosome previously identified as a quantitative locus for 

blood pressure.7 Recent studies suggest an association between ACE2 activity and blood 

pressure levels.109, 110 Serum ACE2 activity was higher in patients with hypertension 
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compared to healthy individuals. In hypertensive patients with type 1 diabetes, serum ACE2 

activity was positively correlated with systolic blood pressure in both males and females.110 

These studies suggest that elevated ACE2 may be a “compensatory response” to the 

hypertension. Indeed, the anti-hypertensive role of ACE2 has also been established in 

various preclinical models of hypertension.28, 111–113 Lentiviral overexpression of ACE2 

results in increased expression of anti-hypertensive components of RAS (Ang 1–7, MasR 

and AT2R) attenuating the elevated blood pressure.111, 112 Similarly, rhACE2 pretreatment 

alleviated hypertension induced by acute Ang II infusion and was associated with decreased 

plasma Ang II and increased plasma Ang 1–7 levels.99 Cyclodextrin-encapsulated Ang 1–7, 

AVE0091, and CGEN856S (MasR agonists) have shown blood pressure-lowering effects in 

hypertensive animals.114 The anti-hypertensive effects of ACE2/Ang 1–7 generated interest 

in potential cardioprotective effects against hypertensive heart diseases, a group of disorders 

that includes HF, ischemic heart disease, hypertensive heart disease, and left ventricular 

hypertrophy.

 b. Role of ACE2/Ang 1–7 in HF with reduced ejection fraction (HF-rEF)

ACE2 plays a critical role in the control of cardiac physiology and altered ACE2 expression 

or activity is linked to the progression of heart disease (Figure 1B). In heart, ACE2 is 

expressed in various cells including the cardiomyocytes, cardiac fibroblasts, and coronary 

endothelial cells,115 where it negates Ang II actions and also activates Ang 1–7/MasR 

signaling (Figure 3). ACE2 expression is highly affected by pathological disease conditions, 

suggesting its role in counter-regulating the development of cardiac diseases. In the human 

population, genetic variations in the ACE2 gene correlate with susceptibility to 

cardiovascular disease.116–118 Single nucleotide polymorphisms of ACE2 are associated 

with variation in septal wall thickness, ventricular hypertrophy,116 and coronary artery 

disease.117

The first report on the role of ACE2 as an essential regulator of cardiac function came soon 

after its discovery.7 In that study, ACE2 knockout mice showed reduced systolic function. 

The decrease in systolic function was both sex- and time-dependent, with more severe 

abnormalities in male than in female mice, and a more pronounced phenotype in older 

animals. ACE2 knockout mice also showed increased Ang II levels, which were rescued 

with genetic ablation of ACE.7 Consistently, we found age-dependent dilated 

cardiomyopathy in ACE2 knockout mice. This resulted in reduced systolic function along 

with increased cardiac inflammation and oxidative stress.29 Myocardial ACE2 protein levels 

were decreased in pressure-overload-induced HF, suggesting an inverse relationship between 

myocardial ACE2 protein levels and disease progression.22, 67 In addition, loss of ACE2 

resulted in worsened pathological remodeling in response to pressure-overload-induced 

biomechanical stress. This was associated with systolic dysfunction and ventricular dilation. 

Both were deemed due to activation of the myocardial NAPDH oxidase system, superoxide 

production, and matrix metalloproteinase (MMP) activation, which was attributed to 

increased local Ang II levels (Figure 3; Table).30, 119, 120 Post-MI remodeling and coronary 

artery disease is one of the most common causes of HF.121 MI increased ACE2 mRNA 

expression in humans, mice, and rats,122, 123 whereas loss of ACE2 or inhibition of ACE2 by 

C16, resulted in worsening of MI-induced cardiac dysfunction, increased infarct size, MMP 
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activation, cardiac extracellular matrix disruption, and inflammation (Table).123, 124 

Lentiviral125, 126 or adenoviral127 overexpression of ACE2 ameliorated MI-induced cardiac 

remodeling. In addition, lentiviral infection of cultured fibroblasts decreased the acute 

hypoxic exposure-induced production of collagen.128

Importantly, Ang 1–7 treatment has shown noticeable cardioprotective effects in preclinical 

models of non-ischemic and ischemic cardiomyopathy.15, 21, 126, 129 Ang 1–7 suppressed 

cardiomyocyte growth in vitro and inhibited myocardial infarction-induced ventricular 

hypertrophy in vivo. Ang 1–7 also decreased myocardial levels of pro-inflammatory 

cytokines (TNFα and IL-6) leading to alleviation of cardiac inflammation.21, 126 These 

results confirm the important contribution of Ang 1–7 in the cardioprotective effects of 

ACE2 (Figure 4).

 c. Role of ACE2/Ang 1–7 in HF with preserved ejection fraction (HF-pEF)

HF-pEF, also termed diastolic HF, is often associated with a normal or smaller heart size and 

diastolic filling abnormalities. It accounts for approximately 30% of all HF patients, with a 

similar mortality rate to patients with HF-rEF.84, 130 Ang II-induced diastolic dysfunction is 

a clinically relevant, widely accepted preclinical model of HF-pEF. We and others found that 

loss of ACE2 resulted in worsened cardiac dysfunction, cardiac hypertrophy, and fibrosis, 

leading to greater diastolic dysfunction in response to Ang II (Table).67, 131 Importantly, 

treatment with rhACE2 decreased plasma and myocardial Ang II levels and increased 

plasma Ang 1–7 levels, providing definitive evidence for a key role of ACE2 in the 

metabolism of Ang II.67 Furthermore, rhACE2 attenuated pathological changes mediated by 

Ang II, reducing myocardial hypertrophy and fibrosis and correcting diastolic dysfunction. 

However, treatment with rhACE2 did not affect baseline plasma Ang II, Ang 1–7, or blood 

pressure in wild-type mice. This suggests that substrate availability is a limiting factor in 

ACE2 enzymatic activity.132 The pursuit of molecular mechanisms for these actions 

identified rhACE2’s capacity to inhibit the Ang II effects on TGF-β1 activation and collagen 

production.57, 67, 133 Loss of ACE2 also resulted in increased production of reactive oxygen 

species (ROS) via NADPH oxidase 2 activation, which is also suppressible by rhACE2.67 

Lentiviral overexpression of ACE2 protects the heart against myocardial injuries induced by 

Ang II in rats, confirming the role of ACE2 in counteracting HF-pEF.13430 We assessed the 

contribution of Ang 1–7/MasR activation to the favorable effects shown by rhACE2 in the 

Ang II-induced murine HF model; inhibition of Ang 1–7/MasR signaling resulted in loss of 

rhACE2 mediated cardioprotective effects. However, this observation does not rule out the 

potential contribution of Ang 1–9 to the protective effects of rhACE2. An appropriate 

preclinical study is required to assess the relative contributions of Ang 1–9 and Ang 1–7.100 

ACE2 is an endogenous regulator of activated RAS-induced HF-pEF and enhancing ACE2 

has a marked beneficial effect.

 d. Role of ACE2/Ang 1–7 in diabetes and obesity-associated cardiomyopathy

Diabetes and obesity are major causes of morbidity and mortality in all parts of the world 

including Canada.78 Studies of the ACE2/Ang 1–7 axis in diabetes and obesity-associated 

cardiac dysfunction have shed light on the critical role of this pathway in counter-regulation 

of the Ang II/AT1R axis (Figure 4). In human type 1 diabetes, elevated plasma ACE2 
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activity correlated with microvascular and macrovascular complications, increased systolic 

blood pressure, and the duration of diabetes,110 strongly supporting a key clinical role for 

the ACE2 system in cardiovascular disease that is secondary to diabetes. The role of ACE2 

in diabetic cardiovascular complications has been studied in various preclinical models of 

diabetes. Tools such as ACE2 knockout mice,123, 135 adenoviral ACE2 gene transfer,136 

rhACE2,137 ACE2 activators and inhibitors,138–140 Ang 1–7 supplementation,141 Ang 1–7/

MasR activator (AVE0991)142 and Ang 1–7/MasR receptor blockade (A779)142 have been 

utilized to assess the role of ACE2/Ang 1–7 in diabetic cardiovascular complications.

We studied the role of ACE2 in preventing progression of type 1 diabetic cardiovascular 

complications135 using a clinically relevant animal model of diabetes, the Akita mouse. 

Akita type 1 diabetic hearts show diastolic dysfunction associated with reduced levels of the 

cardiac SERCA2a and increased myocardial lipotoxicity.143 Loss of ACE2 in these hearts, 

in Akita/ACE2 knockout double mutants, resulted in systolic dysfunction.135 Akita/ACE2 

knockout hearts exhibited increased NADPH oxidase activity, ROS production, and protein 

kinase C and MMP activation, leading to increased degradation of the cardiac extracellular 

matrix. This study demonstrated a key role for ACE2 as a negative regulator of activated 

RAS in diabetic cardiomyopathy.135 Further studies have validated our findings for this 

essential role of ACE2 in diabetic cardiomyopathy.136, 138–140, 144 We also identified 

beneficial effects of Ang 1–7 in type 2 diabetic cardiomyopathy. By reducing cardiac 

hypertrophy, lipotoxicity, and adipose inflammation, in combination with increased adipose 

triglyceride lipase, Ang 1–7 completely rescued diastolic dysfunction in the db/db type 2 

diabetic murine model.141, 145

Obesity is characterized by excessive fat accumulation in adipose tissues throughout the 

body and is the most common nutritional disorder in industrialized countries. Obesity is 

associated with increased morbidity and mortality and is a risk factor for development of 

HF-pEF, independent of other comorbid conditions.82–84, 146 We studied the role of ACE2 in 

obesity induced by high fat diet and associated cardiac dysfunction.147 Loss of ACE2 was 

associated with worsened obesity-associated HF-pEF due to increased epicardial adipose 

tissue inflammation, myocardial lipotoxicity, and cardiac metabolic abnormalities (Table). 

These findings coupled with the protective effects of ACE2/Ang 1–7 in the vasculature 

supports a key role of adipose tissue inflammation and microvascular dysfunction in the 

pathogenesis of HF-pEF.69, 148 Importantly, Ang 1–7 prevented these changes and rescued 

HF-pEF in ACE2 knockout mice, validating its critical role in ACE2-mediated 

cardioprotection (Figure 4). As such, enhancing the ACE2/Ang 1–7 pathways represents a 

potential therapy for HF-pEF, which currently lacks effective therapies.

 Therapeutic approaches and potential of enhancing ACE2/Ang 1–7 in HF

Irrespective of the capacity of ACEi to inhibit ACE action, Ang II levels can remain elevated 

in optimally treated HF patients; about 50% of patients using ongoing ACEi therapy exhibit 

elevated levels of Ang II.95–98 The generation of plasma and tissue Ang II by non-ACE 

related enzymes such as chymase suggests that enhancing ACE2 action may indeed have a 

unique therapeutic role.67, 96 In fact, ACEi and ARB have been shown to upregulate the 

expression of ACE2 or prevent the loss of ACE2.102, 149 ADAM17-mediated ACE2 
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shedding represents a mechanism by which Ang II induces a positive feedback mechanism 

in the tissue-localized RAS leading to its dysregulation. This results in the neurohumoral 

imbalance that is typical of HF.150 Inhibiting TACE-mediated shedding of ACE2 from the 

surface of cardiac cells, leading to retention of ACE2 enzymatic activity within the cardiac 

microenvironment, might have therapeutic potential. ACE2 is post-transcriptionally 

regulated by miR-421, inhibition of which may result in increased ACE2 expression. As 

ACE2 is also subject to transcriptional regulation by SIRT1 and apelin, SIRT1 activators or 

apelin may have therapeutic benefits by enhancing the actions of ACE2.

A well-studied tool to enhance ACE2 action is rhACE2. A randomized, double-blinded, 

placebo-controlled study administered Intravenous rhACE2 to healthy human subjects and 

found that the rhACE2 was well-tolerated. Despite marked changes in angiotensin system 

peptide concentrations, hypotension was absent, suggesting the presence of effective 

compensatory mechanisms in healthy volunteers.106 rhACE2 is primarily responsible for the 

conversion of Ang II into Ang 1–7 but can also convert Ang 1–10 into Ang 1–9.151 In 

healthy human volunteers treated with rhACE2, Ang II levels were reduced but Ang 1–7 

levels were increased or remained unchanged.104, 106 Importantly, in a recently completed 

phase II trial in patients with acute lung injury, rhACE2 resulted in sustained reduction in 

plasma Ang II levels and elevation in Ang 1–7 levels.105 We propose that assessment of 

plasma RAS peptide levels can allow the tailoring of rhACE2 therapy for human HF. 

rhACE2 provided beneficial effects against Ang II-induced HF-pEF and pressure-overload-

induced HF-rEF in murine models of HF (Table).67 Thus, using rhACE2 as a therapy is very 

much a viable option and the advancement of rhACE2 in clinical trials provides the 

translational impact of rhACE2 findings in murine models.104, 105 Several ACE2 activators 

and Ang 1–7/MasR agonists have been developed. In addition, novel approaches, including 

oral ACE2 and Ang 1–7 biencapsulated in plant cells, have been designed and used in 

preclinical studies, showing promising cardioprotective effects.152–156 Lastly, gene therapy 

approaches could be utilized to achieve the tissue-specific delivery of ACE2/Ang 1–7.

Autologous cell-based therapy using putative progenitor cells such as CD34+ cells could be 

an attractive therapeutic approach for diabetic vascular complications. However, these cells 

are dysfunctional in diabetic individuals. Peripheral CD34+ cells isolated from patients with 

diabetes exhibit reduced proliferative potential and migratory function, which could be 

attributed to decreased eNOS activity, increased ROS levels, and advanced glycation end-

products.157, 158 As ACE2 and Ang 1–7 are potent activators of eNOS19 and anti-

oxidants,100, 135 the ACE2/Ang 1–7/MasR axis should improve CD34+ cell function and 

result in increased reparative efficacy. Indeed, Ang 1–7 increased the vascular reparative 

function of CD34+ cells isolated from patients with diabetes.159

 Conclusions

ACE2 has emerged as the dominant mechanism for negative regulation of the RAS, by 

metabolizing Ang II into the beneficial peptide Ang 1–7. This important biochemical and 

physiological property is being harnessed as potential therapy for HF. Since the discovery of 

ACE2 in 2000, tremendous progress has been made in elucidating its biochemical actions 

and its key role in heart disease and HF. ACE2 is widely expressed and regulates the 
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fundamental cellular biology of cardiomyocytes, cardiofibroblasts, and coronary endothelial 

cells in both HF-rEF and HF-pEF models. Ang 1–7 has also emerged in HF models as a 

physiologically active peptide with protective effects. Enhancing Ang 1–7 action may also 

provide marked therapeutic effects in HF. Clinical and experimental studies clearly support a 

physiological and pathophysiological role for ACE2/Ang 1–7 in HF, and studies indicate 

that increasing/activating ACE2/Ang 1–7 results in beneficial effects to prevent heart disease 

and HF. Further experimental studies are required that combine rhACE2/ACE2 activators 

with RAS blockers (such as ACE inhibitors or AT1R blockers) to determine if this combined 

approach offers additional benefits.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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 Abbreviations

3′-UTR 3′ untranslated region

ACE Angiotensin converting enzyme

ACE2 Angiotensin converting enzyme 2

ACEi ACE inhibitor

ADAM17 A disintegrin and metalloproteinase 17

ADH Antidiuretic hormone

AICAR 5-amino-4-imidazolecarboxamide riboside

AMPK Adenosine monophosphate kinase

Ang Angiotensin

APA Aminopeptidase A

ARB AT1R blocker

AT1R Angiotensin II type 1 receptor

AT2R Angiotensin II type 2 receptor
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CPA Carboxypeptidase A

DAG Diacyl glycerol

eNOS Endothelial nitric oxide synthase

ERK1/2 Extracellular signal-regulated kinase 1/2

IP3 Inositol triphosphate

HF Heart failure

HF-pEF Heart failure with preserved ejection fraction

HF-rEF Heart failure with reduced ejection fraction

MAPK Mitogen activated protein kinase

MasR Mas receptor

MI Myocardial infarction

miRNA MicroRNA

MMP Matrix metalloproteinases

NAD+ Nicotinamide adenine dinucleotide – oxidized form

NADH Nicotinamide adenine dinucleotide – reduced form

NEP Neutral endopeptidase

Nox2 NADPH oxidase 2

PCP Prolyl carboxypeptidase

PEP Prolyl endopeptidase

NADPH Nicotinamide adenine dinucleotide phosphate

PKC Protein kinase C

PI3K Phosphatidylinositol 3-kinase

PLC Phospholipase C

RAS Renin-angiotensin system

ROS Reactive oxygen species

rhACE2 Recombinant human ACE2

siRNA Small interfering RNA

SIRT1 Sirtuin 1

TACE Tumor necrosis factor-α converting enzyme
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Figure 1. The enzymatic cascade of the RAS, key receptor systems, and the biological effects 
mediated by Ang II and Ang 1–7
(A) The RAS cascade showing the angiotensin peptide metabolic pathway. 

Angiotensinogen, as the starting substrate, is cleaved by renin to Ang I. Ang I is cleaved by 

ACE to Ang II, which is cleaved by ACE2 to Ang 1–7. Ang II acts on AT1 and AT2 

receptors. Ang 1–7 acts on Mas receptors and counterbalances the Ang II/AT1R actions. (B) 

Decreased ACE2 shifts the balance in the RAS to the Ang II/AT1R axis, resulting in disease 

progression. Increased ACE2 (by rhACE2, gene delivery, or ACE2 activators) shifts the 

balance to the Ang 1–7/MasR axis, leading to protection from disease.
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Figure 2. Transcriptional, post-transcriptional, and post-translational regulation of ACE2
ACE2 expression is transcriptionally regulated by energy stress and activation of AMPK via 

SIRT1, which binds to the promoter region and facilitates ACE2 mRNA expression. 

Similarly, apelin binds to the promoter region of ACE2 and enhances its expression. ACE2 

mRNA is subject to post-transcriptional regulation by miR-421, which regulates protein 

expression. Ang II, the main effector peptide of the RAS, is produced by ACE and chymase 

in the heart and other tissues. ACE2, a monocarboxypeptidase, degrades Ang II into a 

heptapetide, Ang 1–7. Ang II, via its action on AT1R, promotes NOX2-dependent ROS 

formation. This leads to phosphorylation and activation of p38-MAPK and ultimately results 

in TACE phosphorylation (Thr735) and activation. Activated TACE proteolytically cleaves 

ACE2 and releases the active ACE2 ectodomain.
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Figure 3. Cardiac effects of the Ang II/AT1R axis and counter-regulation by the ACE2/Ang 1–7/
MasR axis
ACE-mediated generation of Ang II results in activation of various signaling pathways in 

cardiomyocytes, cardiac fibroblasts, and endothelial cells, resulting in adverse cardiac 

remodeling and cardiac dysfunction. Activation of the ACE2/Ang 1–7/MasR axis counter-

regulates Ang II/AT1R mediated effects and also stimulates cardiac contractility mediated by 

the PI3K-Akt-eNOS pathway.
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Figure 4. Central role of the ACE2/Ang 1–7 axis in HF: non-ischemic cardiomyopathy, MI, 
diabetic cardiomyopathy, and obesity-associated cardiac dysfunction
Ang II/AT1R is critically involved in the disease progression leading to non-ischemic, 

ischemic, and diabetic cardiomyopathy and to obesity-associated cardiac dysfunction. By 

converting Ang II to Ang 1–7, ACE2 shifts the balance to the cardioprotective ACE2/Ang 1–

7/MasR axis. EAT: epicardial adipose tissue.
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Table

Interventions to modulate ACE2 levels or activity and their effects in experimental models of heart failure.

Experimental intervention Experimental model Observation

Gain of Function

Lentiviral overexpression LAD* coronary artery ligation 6 weeks post-surgery: complete rescue of cardiac output, a 41% rescue 
of ejection fraction, a 44% rescue in contractility, and a 53% rescue in 
LV anterior (infracted) wall thinning compared to control rats117

Lentiviral overexpression SHR Attenuation of high blood pressure in the SHR, 18% reduction in left 
ventricular wall thickness, 12% increase in left ventricular end 
diastolic, and a 21% increase in end systolic diameters in lenti-ACE2-
treated SHR; attenuation of peri-vascular fibrosis103

Lentiviral overexpression Ang II infusion Attenuation of the increased heart weight/body weight and myocardial 
fibrosis induced by Ang II infusion126

Lentiviral overexpression Cardiac fibroblasts – hypoxia/re- 
oxygenation

Attenuation of both basal and hypoxia/re-oxygenation- induced 
collagen production by fibroblasts120

Adenoviral overexpression LAD coronary artery ligation 4 weeks after ACE2 gene transfer: reduced LV volume and extent of 
myocardial fibrosis, increased LV ejection fraction and levels of ACE2 
activity119

rhACE2 Ang II infusion Blunted the hypertrophic response and expression of hypertrophy 
markers; decreased ROS production; inhibited pathological 
signaling68; rhACE2 administration to WKY rats reduced Ang II 
infusion-induced pressor response, myocardial hypertrophy, 
pathological signaling, and superoxide production24

rhACE2 SHR 14-day administration of rhACE2 partly corrected hypertension, ROS 
production, and pathological signaling in the heart24

rhACE2 Transverse aortic constriction rhACE2 partially prevented the pressure-overload- induced dilated 
cardiomyopathy and mRNA expression of disease markers and pro-
fibrotic genes68

ACE2 activator (DIZE) LAD coronary artery ligation DIZE attenuated the MI-induced decrease in fractional shortening by 
89%, improved dP/dtmax by 92%, and reversed ventricular 
hypertrophy by 18%151

Loss of Function

ACE2KO Ang II infusion Worsened cardiac fibrosis and pathological hypertrophy in ACE2KO 
mice68

ACE2KO Transverse aortic constriction Eccentric cardiac remodeling, increased pathological hypertrophy, and 
worsening of systolic performance; increased ROS production67, 111, 112

ACE2KO LAD coronary artery ligation Enhanced susceptibility to MI, with increased mortality, infarct 
expansion, and adverse ventricular remodeling115

ACE2KO Type 1 diabetes; Akita Loss of ACE2 in type 1 diabetic mice resulted in HF-rEF with 
background HF-pEF in Akita mice129

ACE2KO High fat diet- induced obesity Loss of ACE2 worsens epicardial adipose tissue inflammation, 
myocardial metabolic abnormalities, and lipotoxicity, resulting in HF-
pEF141

ACE2 inhibitor (MLN4760) (mRen2)27 hypertensive rats Increased cardiac Ang II levels; increases in LV anterior, posterior, and 
relative wall thicknesses; increased interstitial collagen fraction area 
and cardiomyocyte hypertrophy157

ACE2 inhibitor (DX600) Ang II stimulation of cultured 
cardiac fibroblasts

DX600 increased superoxide production and expression of CTGF, 
FKN, and phosphorylated ERK1/2; rhACE2 reduced these effects of 
Ang II158

ACE2 Inhibitor (C16) Coronary artery ligation Increase in MI size and reduction in LV % fractional shortening116

*
ACE2KO: ACE2 knockout; CTGF, connective tissue growth factor; DIZE, diminazene aceturate; ERK1/2, extracellular signal-regulated kinase 

1/2; FKN, fractalkine; LAD, left anterior descending; LV, left ventricle; SHR, spontaneously hypertensive rats.

Circ Res. Author manuscript; available in PMC 2017 April 15.


	Abstract
	ACE2: Discovery, biochemistry, and regulation
	a. Discovery of ACE2 and its differences from ACE
	b. Proteolytic processing, transcriptional, and post-transcriptional regulation of ACE2

	Role of ACE2/Ang 1–7 in HF
	a. Role of ACE2/Ang 1–7 in hypertension
	b. Role of ACE2/Ang 1–7 in HF with reduced ejection fraction (HF-rEF)
	c. Role of ACE2/Ang 1–7 in HF with preserved ejection fraction (HF-pEF)
	d. Role of ACE2/Ang 1–7 in diabetes and obesity-associated cardiomyopathy

	Therapeutic approaches and potential of enhancing ACE2/Ang 1–7 in HF
	Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table

