71 research outputs found

    2MASS J154043.42-510135.7: a new addition to the 5 pc population

    Full text link
    The aim of the project is to find the stars nearest to the Sun and to contribute to the completion of the stellar and substellar census of the solar neighbourhood. We identified a new late-M dwarf within 5 pc, looking for high proper motion sources in the 2MASS-WISE cross-match. We collected astrometric and photometric data available from public large-scale surveys. We complemented this information with low-resolution optical and near-infrared spectroscopy with instrumentation on the ESO NTT to confirm the nature of our candidate. We also present a high-quality medium-resolution VLT/X-shooter spectrum covering the 400 to 2500 nm wavelength range. We classify this new neighbour as an M7.0±\pm0.5 dwarf using spectral templates from the Sloan Digital Sky Survey and spectral indices. Lithium absorption at 670.8 nm is not detected in the X-shooter spectrum, indicating that the M7 dwarf is older than 600 Myr and more massive than 0.06 M⊙_{\odot}. We also derive a trigonometric distance of 4.4 pc, in agreement with the spectroscopic distance estimate, making 2MASS\,J154043.42−-510135.7 the nearest M7 dwarf to the Sun. This trigonometric distance is somewhat closer than the ∌\sim6 pc distance reported by the ALLWISE team, who independently identified this object recently. This discovery represents an increase of 25\% in the number of M7--M8 dwarfs already known at distances closer than 8\,pc from our Sun. We derive a density of ρ\rho\,=\,1.9±\pm0.9×\times10−3^{-3}\,pc−3^{-3} for M7 dwarfs in the 8 pc volume, a value similar to those quoted in the literature. This new ultracool dwarf is among the 50 nearest systems to the Sun, demonstrating that our current knowledge of the stellar census within the 5 pc sample remains incomplete. 2M1540 represents a unique opportunity to search for extrasolar planets around ultracool dwarfs due to its proximity and brightness.Comment: 8 pages, 5 figures. Acepted in Astronomy & Astrophysics (15/05/2005

    Binary frequency of planet-host stars at wide separations: A new brown dwarf companion to a planet-host star

    Full text link
    The aim of the project is to improve our knowledge on the multiplicity of planet-host stars at wide physical separations. We cross-matched approximately 6200 square degree area of the Southern sky imaged by the Visible Infrared Survey Telescope for Astronomy (VISTA) Hemisphere Survey (VHS) with the Two Micron All Sky Survey (2MASS) to look for wide common proper motion companions to known planet-host stars. We complemented our astrometric search with photometric criteria. We confirmed spectroscopically the co-moving nature of seven sources out of 16 companion candidates and discarded eight, while the remaining one stays as a candidate. Among these new wide companions to planet-host stars, we discovered a T4.5 dwarf companion at 6.3 arcmin (~9000 au) from HIP70849, a K7V star which hosts a 9 Jupiter mass planet with an eccentric orbit. We also report two new stellar M dwarf companions to one G and one metal-rich K star. We infer stellar and substellar binary frequencies for our complete sample of 37 targets of 5.4+/-3.8% and 2.7+/-2.7% (1 sigma confidence level), respectively, for projected physical separations larger than ~60-160 au assuming the range of distances of planet-host stars (24-75 pc). These values are comparable to the frequencies of non planet-host stars. We find that the period-eccentricity trend holds with a lack of multiple systems with planets at large eccentricities (e > 0.2) for periods less than 40 days. However, the lack of planets more massive than 2.5 Jupiter masses and short periods (<40 days) orbiting single stars is not so obvious due to recent discoveries by ground-based transit surveys and space missions.Comment: Accepted for publication in A&A, 13 pages, 5 figures, 3 tables, optical spectra will be available at CDS Strasbour

    82: Severe Hemorrhagic Cystitis (HC) After Allogeneic Hematopoeitic Stem Cell Transplantation (HSCT): Incidence and Risk Factors

    Get PDF
    With the purpose to investigate the radio emission of new ultracool objects, we carried out a targeted search in the recently discovered system VHS J125601.92−-125723.9 (hereafter VHS 1256−-1257); this system is composed by an equal-mass M7.5 binary and a L7 low-mass substellar object located at only 15.8\,pc. We observed in phase-reference mode the system VHS 1256−-1257 with the Karl G. Jansky Very Large Array at XX- and LL- band and with the European VLBI Network at LL-band in several epochs during 2015 and 2016. We discovered radio emission at XX-band spatially coincident with the equal-mass M7.5 binary with a flux density of 60 ÎŒ\muJy. We determined a spectral index α=−1.1±0.3\alpha = -1.1 \pm 0.3 between 8 and 12 GHz, suggesting that non-thermal, optically-thin, synchrotron or gyrosynchrotron radiation is responsible for the observed radio emission. Interestingly, no signal is seen at LL-band where we set a 3-σ\sigma upper limit of 20 ÎŒ\muJy. This might be explained by strong variability of the binary or self-absorption at this frequency. By adopting the latter scenario and gyrosynchrotron radiation, we constrain the turnover frequency to be in the interval 5--8.5 GHz, from which we infer the presence of kG-intense magnetic fields in the M7.5 binary. Our data impose a 3-σ\sigma upper bound to the radio flux density of the L7 object of 9 ÎŒ\muJy at 10\,GHz.Comment: 6 pages, 4 figures. Accepted for publication in A&

    A deep WISE search for very late type objects and the discovery of two halo/thick-disc T dwarfs : WISE 0013+0634 and WISE 0833+0052

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reservedA method is defined for identifying late-T and Y dwarfs in WISE down to low values of signal-to-noise. This requires a WISE detection only in the W2-band and uses the statistical properties of the WISE multiframe measurements and profile fit photometry to reject contamination resulting from non-point-like objects, variables and moving sources. To trace our desired parameter space, we use a control sample of isolated non-moving non-variable point sources from the Sloan Digital Sky Survey (SDSS), and identify a sample of 158 WISE W2-only candidates down to a signal-to-noise limit of eight. For signal-to-noise ranges >10 and 8-10, respectively, similar to 45 and similar to 90 per cent of our sample fall outside the selection criteria published by the WISE team, mainly due to the type of constraints placed on the number of individual W2 detections. We present follow-up of eight candidates and identify WISE 0013+0634 and WISE 0833+0052, T8 and T9 dwarfs with high proper motion (similar to 1.3 and similar to 1.8 arcsec yr(-1)). Both objects show a mid-infrared/near-infrared excess of similar to 1-1.5 mag and are K band suppressed. Distance estimates lead to space motion constraints that suggest halo (or at least thick disc) kinematics. We then assess the reduced proper motion diagram of WISE ultracool dwarfs, which suggests that late-T and Y dwarfs may have a higher thick-disc/halo population fraction than earlier objects.Peer reviewe

    A new L-dwarf member of the moderately metal-poor triple system HD 221356

    Full text link
    We report on the discovery of a fourth component in the HD 221356 star system, previously known to be formed by an F8V, slightly metal-poor primary ([Fe/H]=-0.26), and a distant M8V+L3V pair. In our ongoing common proper motion search based on VISTA Hemisphere Survey (VHS) and 2MASS catalogues, we have detected a faint (J=13.76+/-0.04 mag) co-moving companion of the F8 star located at angular separation of 12.13+/-0.18 arcsec (position angle of 221.8+/-1.7), corresponding to a projected distance of ~312 AU at 26 pc. Near-infrared spectroscopy of the new companion, covering the 1.5-2.4 micron wavelength range with a resolving power of R~600, indicates an L1+/-1 spectral type. Using evolutionary models the mass of the new companion is estimated at ~0.08 solar masses, which places the object close to the stellar-substellar borderline. This multiple system provides an interesting example of objects with masses slightly above and below the hydrogen burning mass limit. The low mass companions of HD 221356 have slightly bluer colours than field dwarfs with similar spectral type, which is likely a consequence of the sub-solar metallicity of the system.Comment: 7 pages, 4 figures, accepted for publication in MNRA

    A focus on L dwarfs with trigonometric parallaxes

    Get PDF
    This is an author-created, un-copyedited version of an article published in Publications of the Astronomical Society of the Pacific. Under embargo until 14 May 2019. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1538-3873/aaacc5.We report new parallax measurements for ten L and early T type dwarfs, five of which have no previous published values, using observations over 3 years at the robotic Liverpool Telescope. The resulting parallaxes and proper motions have median errors of 2\,mas and 1.5\,mas/year respectively. Their space motions indicate they are all Galactic disk members. We combined this sample with other objects with astrometry from the Liverpool Telescope and with published literature astrometry to construct a sample of 260 L and early T type dwarfs with measured parallaxes, designated the Astrometry Sample. We study the kinematics of the Astrometry Sample, and derived a solar motion of (U,V,W)⹀=(7.9±1.7,13.2±1.2,7.2±1.0)(U,V,W)_{\bigodot} = (7.9\pm1.7,13.2\pm1.2,7.2\pm1.0)\,\kms~ with respect to the local standard of rest, in agreement with recent literature. We derive a kinematic age of 1.5-1.7\,Gyr for the Astrometry Sample assuming the age increases monotonically with the total velocity for a given disk sample. This kinematic age is less than half literature values for other low mass dwarf samples. We believe this difference arises for two reasons (1) the sample is mainly composed of mid to late L dwarfs which are expected to be relatively young and (2) the requirement that objects have a measured parallax biases the sample to the brighter examples which tend to be younger.Peer reviewedFinal Accepted Versio

    ADAPTIVE OPTICS IMAGING OF VHS 1256-1257: A LOW MASS COMPANION TO A BROWN DWARF BINARY SYSTEM

    Get PDF
    Recently, Gauza et al. (2015) reported the discovery of a companion to the late M-dwarf, VHS J125601.92-125723.9 (VHS 1256-1257). The companion's absolute photometry suggests its mass and atmosphere are similar to the HR 8799 planets. However, as a wide companion to a late-type star, it is more accessible to spectroscopic characterization. We discovered that the primary of this system is an equal-magnitude binary. For an age ∌300\sim300 Myr the A and B components each have a mass of 64.6−2.0+0.8 MJup64.6^{+0.8}_{-2.0}~M_{\mathrm{Jup}}, and the b component has a mass of 11.2−1.8+9.711.2^{+9.7}_{-1.8}, making VHS 1256-1257 only the third brown dwarf triple system. There exists some tension between the spectrophotometric distance of 17.2±2.617.2\pm2.6 pc and the parallax distance of 12.7±1.012.7\pm1.0 pc. At 12.7 pc VHS1256-1257 A and B would be the faintest known M7.5 objects, and are even faint outliers among M8 types. If the larger spectrophotmetric distance is more accurate than the parallax, then the mass of each component increases. In particular, the mass of the b component increases well above the deuterium burning limit to ∌35 MJup\sim35~M_{\mathrm{Jup}} and the mass of each binary component increases to 73−17+20 MJup73^{+20}_{-17}~M_{\mathrm{Jup}}. At 17.1 pc, the UVW kinematics of the system are consistent with membership in the AB~Dor moving group. The architecture of the system resembles a hierarchical stellar multiple suggesting it formed via an extension of the star-formation process to low masses. Continued astrometric monitoring will resolve this distance uncertainty and will provide dynamical masses for a new benchmark system.Comment: Accepted to ApJ

    Radio emission in a nearby, ultra-cool dwarf binary: A multifrequency study

    Get PDF
    Context. The substellar triple system VHS J125601.92−125723.9 (hereafter VHS 1256−1257) is composed of an equal-mass M7.5 brown dwarf binary and an L7 low-mass substellar object. In Guirado et al. (2018, A&A, 610, A23) we published the detection of radio emission at 8.4 GHz coming from the central binary and making it an excellent target for further observations. Aims. We aim to identify the origin of the radio emission occurring in the central binary of VHS 1256−1257 while discussing the expected mechanisms involved in the radio emission of ultra-cool dwarfs. Methods. We observed this system with the Karl G. Jansky Very Large Array, the European very-long-baseline interferometry (VLBI) Network, the enhanced Multi-Element Remotely Linked Interferometer Network, the NOrthern Extended Millimeter Array, and the Atacama Large Millimetre Array at frequencies ranging from 5 GHz up to 345 GHz in several epochs during 2017, 2018, and 2019. Results. We found radio emission at 6 GHz and 33 GHz coincident with the expected position of the central binary of VHS 1256−1257. The Stokes I density fluxes detected were 73 ± 4 ÎŒJy and 83 ± 13 ÎŒJy, respectively, with no detectable circular polarisation or pulses. No emission is detected at higher frequencies (230 GHz and 345 GHz), nor at 5 GHz with VLBI arrays. The emission appears to be stable over almost three years at 6 GHz. To explain the constraints obtained both from the detections and non-detections, we considered multiple scenarios including thermal and nonthermal emission, and different contributions from each component of the binary. Conclusions. Our results can be well explained by nonthermal gyrosynchrotron emission originating at radiation belts with a low plasma density (ne = 300−700 cm−3), a moderate magnetic field strength (B ≈ 140 G), and an energy distribution of electrons following a power-law (dN/dE ∝ E−ή) with ÎŽ fixed at 1.36. These radiation belts would need to be present in both components and also be viewed equatorially. © ESO 2022.We sincerely thank the anonymous referee for his/her very useful and constructive criticisms and suggestions. This paper is based on observations carried out with the IRAM NOEMA interferometer and the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). JBC and JCG were partially supported by the Spanish MINECO projects AYA2015-63939-C2-2-P, PGC2018-098915-B-C22 and by the Generalitat Valenciana project GVPROMETEO2020−080. MPT acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de AstrofĂ­sica de AndalucĂ­a (SEV-2017-0709) and through grants PGC2018-098915-B-C21 and PID2020-117404GB-C21 (MCI/AEI/FEDER, UE). RA was supported by the Generalitat Valenciana postdoctoral grant APOSTD/2018/177. BG acknowledges support from the UK Science and Technology Facilities Council (STFC) via the Consolidated Grant ST/R000905/1. MRZO and VJSB acknowledge the financial support from PID2019-109522GB-C51 and PID2019-109522GB-C53, respectively.Peer reviewe
    • 

    corecore