230 research outputs found

    Nucleic Acids Res

    Get PDF
    The structure and function of conserved motifs constituting the apex of Stem I in T-box mRNA leaders are investigated. We point out that this apex shares striking similarities with the L1 stalk (helices 76-78) of the ribosome. A sequence and structure analysis of both elements shows that, similarly to the head of the L1 stalk, the function of the apex of Stem I lies in the docking of tRNA through a stacking interaction with the conserved G19:C56 base pair platform. The inferred structure in the apex of Stem I consists of a module of two T-loops bound together head to tail, a module that is also present in the head of the L1 stalk, but went unnoticed. Supporting the analysis, we show that a highly conserved structure in RNAse P formerly described as the J11/12-J12/11 module, which is precisely known to bind the elbow of tRNA, constitutes a third instance of this T-loop module. A structural analysis explains why six nucleotides constituting the core of this module are highly invariant among all three types of RNA. Our finding that major RNA partners of tRNA bind the elbow with a same RNA structure suggests an explanation for the origin of the tRNA L-shape

    Sequence determinants in human polyadenylation site selection

    Get PDF
    BACKGROUND: Differential polyadenylation is a widespread mechanism in higher eukaryotes producing mRNAs with different 3' ends in different contexts. This involves several alternative polyadenylation sites in the 3' UTR, each with its specific strength. Here, we analyze the vicinity of human polyadenylation signals in search of patterns that would help discriminate strong and weak polyadenylation sites, or true sites from randomly occurring signals. RESULTS: We used human genomic sequences to retrieve the region downstream of polyadenylation signals, usually absent from cDNA or mRNA databases. Analyzing 4956 EST-validated polyadenylation sites and their -300/+300 nt flanking regions, we clearly visualized the upstream (USE) and downstream (DSE) sequence elements, both characterized by U-rich (not GU-rich) segments. The presence of a USE and a DSE is the main feature distinguishing true polyadenylation sites from randomly occurring A(A/U)UAAA hexamers. While USEs are indifferently associated with strong and weak poly(A) sites, DSEs are more conspicuous near strong poly(A) sites. We then used the region encompassing the hexamer and DSE as a training set for poly(A) site identification by the ERPIN program and achieved a prediction specificity of 69 to 85% for a sensitivity of 56%. CONCLUSION: The availability of complete genomes and large EST sequence databases now permit large-scale observation of polyadenylation sites. Both U-rich sequences flanking both sides of poly(A) signals contribute to the definition of "true" sites. However, the downstream U-rich sequences may also play an enhancing role. Based on this information, poly(A) site prediction accuracy was moderately but consistently improved compared to the best previously available algorithm

    Complete chloroplast genome sequence of Holoparasite Cistanche Deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from Its host Haloxylon Ammodendron (Chenopodiaceae)

    Get PDF
    The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. The authors report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae

    Predicting RNA secondary structure by the comparative approach: how to select the homologous sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The secondary structure of an RNA must be known before the relationship between its structure and function can be determined. One way to predict the secondary structure of an RNA is to identify covarying residues that maintain the pairings (Watson-Crick, Wobble and non-canonical pairings). This "comparative approach" consists of identifying mutations from homologous sequence alignments. The sequences must covary enough for compensatory mutations to be revealed, but comparison is difficult if they are too different. Thus the choice of homologous sequences is critical. While many possible combinations of homologous sequences may be used for prediction, only a few will give good structure predictions. This can be due to poor quality alignment in stems or to the variability of certain sequences. This problem of sequence selection is currently unsolved.</p> <p>Results</p> <p>This paper describes an algorithm, <it>SSCA</it>, which measures the suitability of sequences for the comparative approach. It is based on evolutionary models with structure constraints, particularly those on sequence variations and stem alignment. We propose three models, based on different constraints on sequence alignments. We show the results of the <it>SSCA </it>algorithm for predicting the secondary structure of several RNAs. <it>SSCA </it>enabled us to choose sets of homologous sequences that gave better predictions than arbitrarily chosen sets of homologous sequences.</p> <p>Conclusion</p> <p><it>SSCA </it>is an algorithm for selecting combinations of RNA homologous sequences suitable for secondary structure predictions with the comparative approach.</p

    RNAcentral: A vision for an international database of RNA sequences

    Get PDF
    During the last decade there has been a great increase in the number of noncoding RNA genes identified, including new classes such as microRNAs and piRNAs. There is also a large growth in the amount of experimental characterization of these RNA components. Despite this growth in information, it is still difficult for researchers to access RNA data, because key data resources for noncoding RNAs have not yet been created. The most pressing omission is the lack of a comprehensive RNA sequence database, much like UniProt, which provides a comprehensive set of protein knowledge. In this article we propose the creation of a new open public resource that we term RNAcentral, which will contain a comprehensive collection of RNA sequences and fill an important gap in the provision of biomedical databases. We envision RNA researchers from all over the world joining a federated RNAcentral network, contributing specialized knowledge and databases. RNAcentral would centralize key data that are currently held across a variety of databases, allowing researchers instant access to a single, unified resource. This resource would facilitate the next generation of RNA research and help drive further discoveries, including those that improve food production and human and animal health. We encourage additional RNA database resources and research groups to join this effort. We aim to obtain international network funding to further this endeavor

    Sensitivity of Five Rapid HIV Tests on Oral Fluid or Finger-Stick Whole Blood: A Real-Time Comparison in a Healthcare Setting

    Get PDF
    BACKGROUND: Health authorities in several countries recently recommended the expansion of human immunodeficiency virus (HIV) antibody testing, including the use of rapid tests. Several HIV rapid tests are now licensed in Europe but their sensitivity on total blood and/or oral fluid in routine healthcare settings is not known. METHODS AND FINDINGS: 200 adults with documented HIV-1 (n=194) or HIV-2 infection (n=6) were prospectively screened with five HIV rapid tests using either oral fluid (OF) or finger-stick whole blood (FSB). The OraQuick Advance rapid HIV1/2 was first applied to OF and then to FSB, while the other tests were applied to FSB, in the following order: Vikia HIV 1/2, Determine HIV 1-2, Determine HIV-1/2 Ag/Ab Combo and INSTI HIV-1/HIV-2. Tests negative on FSB were repeated on paired serum samples. Twenty randomly selected HIV-seronegative subjects served as controls, and the results were read blindly. Most patients had HIV-1 subtype B infection (63.3%) and most were on antiretroviral therapy (68.5%). Sensitivity was 86.5%, 94.5%, 98.5%, 94.9%, 95.8% and 99% respectively, with OraQuick OF, OraQuick FSB, Vikia, Determine, Determine Ag/Ab Combo and INSTI (p<0.0001). OraQuick was less sensitive on OF than on FSB (p=0.008). Among the six patients with three or more negative tests, two had recent HIV infection and four patients on antiretroviral therapy had undetectable plasma viral load. When patients positive in all the tests were compared with patients who had at least one negative test, only a plasma HIV RNA level<200 cp/ml was significantly associated with a false-negative result (p=0.009). When the 33 rapid tests negative on FSB were repeated on serum, all but six (5 negative with OraQuick, 1 with INSTI) were positive. The sensitivity of OraQuick, Determine and Determine Ag/Ab Combo was significantly better on serum than on FSB (97.5%, p=0.04; 100%, p=0.004; and 100%, p=0.02, respectively). CONCLUSION: When evaluated in a healthcare setting, rapid HIV tests were less sensitive on oral fluid than on finger-stick whole blood and less sensitive on finger-stick whole blood than on serum

    Structural Constraints Identified with Covariation Analysis in Ribosomal RNA

    Get PDF
    Covariation analysis is used to identify those positions with similar patterns of sequence variation in an alignment of RNA sequences. These constraints on the evolution of two positions are usually associated with a base pair in a helix. While mutual information (MI) has been used to accurately predict an RNA secondary structure and a few of its tertiary interactions, early studies revealed that phylogenetic event counting methods are more sensitive and provide extra confidence in the prediction of base pairs. We developed a novel and powerful phylogenetic events counting method (PEC) for quantifying positional covariation with the Gutell lab’s new RNA Comparative Analysis Database (rCAD). The PEC and MI-based methods each identify unique base pairs, and jointly identify many other base pairs. In total, both methods in combination with an N-best and helix-extension strategy identify the maximal number of base pairs. While covariation methods have effectively and accurately predicted RNAs secondary structure, only a few tertiary structure base pairs have been identified. Analysis presented herein and at the Gutell lab’s Comparative RNA Web (CRW) Site reveal that the majority of these latter base pairs do not covary with one another. However, covariation analysis does reveal a weaker although significant covariation between sets of nucleotides that are in proximity in the three-dimensional RNA structure. This reveals that covariation analysis identifies other types of structural constraints beyond the two nucleotides that form a base pair

    Phylogenetic Analysis of the Complete Mitochondrial Genome of Madurella mycetomatis Confirms Its Taxonomic Position within the Order Sordariales

    Get PDF
    Background: Madurella mycetomatis is the most common cause of human eumycetoma. The genus Madurella has been characterized by overall sterility on mycological media. Due to this sterility and the absence of other reliable morphological and ultrastructural characters, the taxonomic classification of Madurella has long been a challenge. Mitochondria are of monophyletic origin and mitochondrial genomes have been proven to be useful in phylogenetic analyses. Results: The first complete mitochondrial DNA genome of a mycetoma-causative agent was sequenced using 454 sequencing. The mitochondrial genome of M. mycetomatis is a circular DNA molecule with a size of 45,590 bp, encoding for the small and the large subunit rRNAs, 27 tRNAs, 11 genes encoding subunits of respiratory chain complexes, 2 ATP synthase subunits, 5 hypothetical proteins, 6 intronic proteins including the ribosomal protein rps3. In phylogenetic analyses using amino acid sequences of the proteins involved in respiratory chain complexes and the 2 ATP synthases it appeared that M. mycetomatis clustered together with members of the order Sordariales and that it was most closely related to Chaetomium thermophilum. Analyses of the gene order showed that within the order Sordariales a similar gene order is found. Furthermore also the tRNA order seemed mostly conserved. Conclusion: Phylogenetic analyses of fungal mitochondrial genomes confirmed that M. mycetomatis belongs to the order of Sordariales and that it was most closely related to Chaetomium thermophilum, with which it also shared a comparable gene and tRNA order

    nocoRNAc: Characterization of non-coding RNAs in prokaryotes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The interest in non-coding RNAs (ncRNAs) constantly rose during the past few years because of the wide spectrum of biological processes in which they are involved. This led to the discovery of numerous ncRNA genes across many species. However, for most organisms the non-coding transcriptome still remains unexplored to a great extent. Various experimental techniques for the identification of ncRNA transcripts are available, but as these methods are costly and time-consuming, there is a need for computational methods that allow the detection of functional RNAs in complete genomes in order to suggest elements for further experiments. Several programs for the genome-wide prediction of functional RNAs have been developed but most of them predict a genomic locus with no indication whether the element is transcribed or not.</p> <p>Results</p> <p>We present <smcaps>NOCO</smcaps>RNAc, a program for the genome-wide prediction of ncRNA transcripts in bacteria. <smcaps>NOCO</smcaps>RNAc incorporates various procedures for the detection of transcriptional features which are then integrated with functional ncRNA loci to determine the transcript coordinates. We applied RNAz and <smcaps>NOCO</smcaps>RNAc to the genome of <it>Streptomyces coelicolor </it>and detected more than 800 putative ncRNA transcripts most of them located antisense to protein-coding regions. Using a custom design microarray we profiled the expression of about 400 of these elements and found more than 300 to be transcribed, 38 of them are predicted novel ncRNA genes in intergenic regions. The expression patterns of many ncRNAs are similarly complex as those of the protein-coding genes, in particular many antisense ncRNAs show a high expression correlation with their protein-coding partner.</p> <p>Conclusions</p> <p>We have developed <smcaps>NOCO</smcaps>RNAc, a framework that facilitates the automated characterization of functional ncRNAs. <smcaps>NOCO</smcaps>RNAc increases the confidence of predicted ncRNA loci, especially if they contain transcribed ncRNAs. <smcaps>NOCO</smcaps>RNAc is not restricted to intergenic regions, but it is applicable to the prediction of ncRNA transcripts in whole microbial genomes. The software as well as a user guide and example data is available at <url>http://www.zbit.uni-tuebingen.de/pas/nocornac.htm</url>.</p

    The structure of the human tRNALys3 anticodon bound to the HIV genome is stabilized by modified nucleosides and adjacent mismatch base pairs

    Get PDF
    Replication of human immunodeficiency virus (HIV) requires base pairing of the reverse transcriptase primer, human tRNALys3, to the viral RNA. Although the major complementary base pairing occurs between the HIV primer binding sequence (PBS) and the tRNA's 3′-terminus, an important discriminatory, secondary contact occurs between the viral A-rich Loop I, 5′-adjacent to the PBS, and the modified, U-rich anticodon domain of tRNALys3. The importance of individual and combined anticodon modifications to the tRNA/HIV-1 Loop I RNA's interaction was determined. The thermal stabilities of variously modified tRNA anticodon region sequences bound to the Loop I of viral sub(sero)types G and B were analyzed and the structure of one duplex containing two modified nucleosides was determined using NMR spectroscopy and restrained molecular dynamics. The modifications 2-thiouridine, s2U34, and pseudouridine, Ψ39, appreciably stabilized the interaction of the anticodon region with the viral subtype G and B RNAs. The structure of the duplex results in two coaxially stacked A-form RNA stems separated by two mismatched base pairs, U162•Ψ39 and G163•A38, that maintained a reasonable A-form helix diameter. The tRNA's s2U34 stabilized the interaction between the A-rich HIV Loop I sequence and the U-rich anticodon, whereas the tRNA's Ψ39 stabilized the adjacent mismatched pairs
    corecore