77 research outputs found
Soil warming accelerates decomposition of fine woody debris
© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Plant and Soil 356 (2012): 405-417, doi:10.1007/s11104-012-1130-x.Soil warming from global climate change could increase decomposition of fine woody debris (FWD), but debris size and quality may mitigate this effect. The goal of this study was to investigate the effect of soil warming on decomposition of fine woody debris of differing size and quality. We placed FWD of two size classes (2 × 20 cm and 4 × 40 cm) and four species (Acer saccharum, Betula lenta, Quercus rubra and Tsuga canadensis) in a soil warming and ambient area at Harvard Forest in central Massachusetts. We collected the debris from each area over two years and measured mass loss and lignin concentration. Warming increased mass loss for all species and size classes (by as much as 30%), but larger debris and debris with higher initial lignin content decomposed slower than smaller debris and debris with lower initial lignin content. Lignin degradation did not follow the same trends as mass loss. Lignin loss from the most lignin-rich species, T. canadensis, was the highest despite the fact that it lost mass the slowest. Our results suggest that soil warming will increase decomposition of FWD in temperate forests. It is imperative that future models and policy efforts account for this potential shift in the carbon storage pool
Does the age of fine root carbon indicate the age of fine roots in boreal forests?
To test the reliability of the radiocarbon method for determining root age, we analyzed fine roots (originating from the years 1985 to 1993) from ingrowth cores with known maximum root age (1 to 6 years old). For this purpose, three Scots pine (Pinus sylvestris L.) stands were selected from boreal forests in Finland. We analyzed root 14C age by the radiocarbon method and compared it with the above-mentioned known maximum fine root age. In general, ages determined by the two methods (root 14C age and ingrowth core root maximum age) were in agreement with each other for roots of small diameter (<0.5mm). By contrast, in most of the samples of fine roots of larger diameter (1.5-2mm), the 14C age of root samples of 1987-89 exceeded the ingrowth core root maximum age by 1-10 years. This shows that these roots had received a large amount of older stored carbon from unknown sources in addition to atmospheric CO2 directly from photosynthesis. We conclude that the 14C signature of fine roots, especially those of larger diameter, may not always be indicative of root age, and that further studies are needed concerning the extent of possible root uptake of older carbon and its residence time in roots. Keywords: fine root age, Pinus sylvestris, radiocarbon, root carbon, ingrowth cores, tree ringPeer reviewe
Recommended from our members
Fine-root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores
Background and Aims
Forest trees directly contribute to carbon cycling in forest soils through the turnover of their fine roots. In this study we aimed to calculate root turnover rates of common European forest tree species and to compare them with most frequently published values.
Methods
We compiled available European data and applied various turnover rate calculation methods to the resulting database. We used Decision Matrix and Maximum-Minimum formula as suggested in the literature.
Results
Mean turnover rates obtained by the combination of sequential coring and Decision Matrix were 0.86 yr−1 for Fagus sylvatica and 0.88 yr−1 for Picea abies when maximum biomass data were used for the calculation, and 1.11 yr−1 for both species when mean biomass data were used. Using mean biomass rather than maximum resulted in about 30 % higher values of root turnover. Using the Decision Matrix to calculate turnover rate doubled the rates when compared to the Maximum-Minimum formula. The Decision Matrix, however, makes use of more input information than the Maximum-Minimum formula.
Conclusions
We propose that calculations using the Decision Matrix with mean biomass give the most reliable estimates of root turnover rates in European forests and should preferentially be used in models and C reporting
Diffusion tensor imaging correlates with lesion volume in cerebral hemisphere infarctions
Background
Both a large lesion volume and abnormalities in diffusion tensor imaging are independently associated with a poor prognosis after cerebral infarctions. Therefore, we assume that they are associated. This study assessed the associations between lesion volumes and diffusion tensor imaging in patients with a right-sided cerebral infarction.
Methods
The lesion volumes of 33 patients (age 65.9 ± 8.7, 26 males and 7 females) were imaged using computed tomography (CT) in the acute phase (within 3-4 hours) and magnetic resonance imaging (MRI) in the chronic phase (follow-up at 12 months, with a range of 8-27 months). The chronic-phase fractional anisotropy (FA) and mean diffusivity (MD) values were measured at the site of the infarct and selected white matter tracts. Neurological tests in both the acute and chronic phases, and DTI lateralization were assessed with the Wilcoxon signed-rank test. The effects of thrombolytic therapy (n = 10) were assessed with the Mann-Whitney U test. The correlations between the measured parameters were analysed with Spearman's rho correlation. Bonferroni post-hoc correction was used to compensate for the familywise error rate in multiple comparisons.
Results
Several MD values in the right hemisphere correlated positively and FA values negatively with the lesion volumes. These correlations included both lesion area and healthy tissue. The results of the mini-mental state examination and the National Institutes of Health Stroke Scale also correlated with the lesion volume.
Conclusions
A larger infarct volume is associated with more pronounced tissue modifications in the chronic stage as observed with the MD and FA alterations.BioMed Central Open acces
Recommended from our members
Soil carbon cycling in a temperate forest: Radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes
Temperate forests of North America are thought to be significant sinks of atmospheric CO2. We developed a below-ground carbon (C) budget for well-drained soils in Harvard Forest Massachusetts, an ecosystem that is storing C. Measurements of carbon and radiocarbon (14C) inventory were used to determine the turnover time and maximum rate of CO2 production from heterotrophic respiration of three fractions of soil organic matter (SOM): recognizable litter fragments (L), humified low density material (H), and high density or mineral-associated organic matter (M). Turnover times in all fractions increased with soil depth and were 2-5 years for recognizable leaf litter, 5-10 years for root litter, 40-100+ years for low density humified material and >100 years for carbon associated with minerals. These turnover times represent the time carbon resides in the plant + soil system, and may underestimate actual decomposition rates if carbon resides for several years in living root, plant or woody material. Soil respiration was partitioned into two components using 14C: recent photosynthate which is metabolized by roots and microorganisms within a year of initial fixation (Recent-C), and C that is respired during microbial decomposition of SOM that resides in the soil for several years or longer (Reservoir-C). For the whole soil, we calculate that decomposition of Reservoir-C contributes approximately 41% of the total annual soil respiration. Of this 41%, recognizable leaf or root detritus accounts for 80% of the flux, and 20% is from the more humified fractions that dominate the soil carbon stocks. Measurements of CO2 and 14CO2 in the soil atmosphere and in total soil respiration were combined with surface CO2 fluxes and a soil gas diffusion model to determine the flux and isotopic signature of C produced as a function of soil depth. 63% of soil respiration takes place in the top 15 cm of the soil (O + A + Ap horizons). The average residence time of Reservoir-C in the plant + soil system is 8±1 years and the average age of carbon in total soil respiration (Recent-C + Reservoir-C) is 44±1 years. The O and A horizons have accumulated 4.4 kgC m-2 above the plow layer since abandonment by settlers in the late-1800's. C pools contributing the most to soil respiration have short enough turnover times that they are likely in steady state. However, most C is stored as humified organic matter within both the O and A horizons and has turnover times from 40 to 100+ years respectively. These reservoirs continue to accumulate carbon at a combined rate of 10-30 gC m-2 yr-1. This rate of accumulation is only 5-15% of the total ecosystem C sink measured in this stand using eddy covariance methods
Recommended from our members
Soil carbon cycling in a temperate forest: Radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes
Temperate forests of North America are thought to be significant sinks of atmospheric CO2. We developed a below-ground carbon (C) budget for well-drained soils in Harvard Forest Massachusetts, an ecosystem that is storing C. Measurements of carbon and radiocarbon (14C) inventory were used to determine the turnover time and maximum rate of CO2 production from heterotrophic respiration of three fractions of soil organic matter (SOM): recognizable litter fragments (L), humified low density material (H), and high density or mineral-associated organic matter (M). Turnover times in all fractions increased with soil depth and were 2-5 years for recognizable leaf litter, 5-10 years for root litter, 40-100+ years for low density humified material and >100 years for carbon associated with minerals. These turnover times represent the time carbon resides in the plant + soil system, and may underestimate actual decomposition rates if carbon resides for several years in living root, plant or woody material. Soil respiration was partitioned into two components using 14C: recent photosynthate which is metabolized by roots and microorganisms within a year of initial fixation (Recent-C), and C that is respired during microbial decomposition of SOM that resides in the soil for several years or longer (Reservoir-C). For the whole soil, we calculate that decomposition of Reservoir-C contributes approximately 41% of the total annual soil respiration. Of this 41%, recognizable leaf or root detritus accounts for 80% of the flux, and 20% is from the more humified fractions that dominate the soil carbon stocks. Measurements of CO2 and 14CO2 in the soil atmosphere and in total soil respiration were combined with surface CO2 fluxes and a soil gas diffusion model to determine the flux and isotopic signature of C produced as a function of soil depth. 63% of soil respiration takes place in the top 15 cm of the soil (O + A + Ap horizons). The average residence time of Reservoir-C in the plant + soil system is 8±1 years and the average age of carbon in total soil respiration (Recent-C + Reservoir-C) is 44±1 years. The O and A horizons have accumulated 4.4 kgC m-2 above the plow layer since abandonment by settlers in the late-1800's. C pools contributing the most to soil respiration have short enough turnover times that they are likely in steady state. However, most C is stored as humified organic matter within both the O and A horizons and has turnover times from 40 to 100+ years respectively. These reservoirs continue to accumulate carbon at a combined rate of 10-30 gC m-2 yr-1. This rate of accumulation is only 5-15% of the total ecosystem C sink measured in this stand using eddy covariance methods
- …