41 research outputs found

    Influence of calcium on transport properties, band spectrum and superconductivity of YBa2Cu3O(y) and YBa(1.5)La(0.5)Cu3O(y)

    Get PDF
    The comparative investigation of transport phenomena in Y(1-x)Ca(x)Ba2Cu3O(y) (0 is less than x is less than 0.25; 6.96 is greater than y is greater than 6.87 and 6.73 is less than x is less than 6.53); Y(1-x)Ca(x)Ba(1.5)La(0.5)Cu3O(y) (0 is less than x is less than 0.5; 7.12 is greater than y is greater than 6.96) and YBa(2-x)La(x)Cu3O(y) (0 is less than x is less than 0.5; 6.95 is less than y is less than 7.21) systems have been carried out. The temperature dependencies of resistivity and thermopower have been measured. It was found that the S(T) dependencies take some additional features with Ca content increase. The results obtained have been analyzed on the basis of the phenomenological theory of electron transport in the case of the narrow conductive band. The main parameters of the band spectrum (the band filling with electrons degree and the total effective band width) have been determined. The dependencies of these from contents of substituting elements are discussed. Analyzing the results obtained simultaneously with the tendencies in oxygen content and critical temperature change we have confirmed the conclusion that the oxygen sublattice disordering has a determinant effect on band structure parameters and superconductive properties of YBa2Cu3O(y). The results obtained suggest that Ca gives rise to some peculiarities in band spectrum of this compound

    The thermopower in the temperature range T(sub c)-1000K and the bank spectrum of Bi-based superconductors

    Get PDF
    The temperature dependencies of thermopower, S, in the range T = T(sub c)-1000K as well as of resistivity and Hall coefficient in the range T = T(sub c)-300K for the single-phase ceramic samples Bi2Sr2Ca(1-x)Nd(x)Cu2O(y) have been measured. It was found that the S(T) dependencies in normal phase have three characteristic regions. Despite the fact that the S(T) dependencies in Bi-based high-T(sub c) superconductors (HTSC) differ essentially from ones in Y-based HTSC at T = T(sub c)-300K, the main feature of theirs (S(T) = const at high temperatures) retains in samples investigated at T is greater than 620K. The results obtained have been analyzed on the basis of the narrow-band model with the use of assumption of slight asymmetry of the conductive band. The band spectrum parameters of the samples studied have been calculated. An analysis of the tendencies in these parameters changes with samples composition varying enables to make the conclusion about the similarity of the main features of the conductive band structure in Y- and Bi-based HTSC

    Nernst Effect in Electron-Doped Pr2−x_{2-x}Cex_{x}CuO4_4

    Full text link
    The Nernst effect of Pr2−x_{2-x}Cex_{x}CuO4_4 (x=0.13, 0.15, and 0.17) has been measured on thin film samples between 5-120 K and 0-14 T. In comparison to recent measurements on hole-doped cuprates that showed an anomalously large Nernst effect above the resistive Tc_c and Hc2_{c2} \cite{xu,wang1,wang2,capan}, we find a normal Nernst effect above Tc_c and Hc2_{c2} for all dopings. The lack of an anomalous Nernst effect in the electron-doped compounds supports the models that explain this effect in terms of amplitude and phase fluctuations in the hole-doped cuprates. In addition, the Hc2_{c2}(T) determined from the Nernst effect shows a conventional behavior for all dopings. The energy gap determined from Hc2_{c2}(0) decreases as the system goes from under-doping to over-dopingin agreement with the recent tunnelling experiments

    Temperature and magnetic-field dependence of the conductivity of YBaCuO films in the vicinity of superconducting transition: Effect of Tc-inhomogeneity

    Full text link
    Temperature and magnetic field dependences of the conductivity of YBaCuO films in the transition region are analyzed taking into account spatial inhomogeneity in transition temperature, Tc. (i) An expression for the superconducting contribution to conductivity, \sigma_s(T,H,Tc), of a homogeneous superconductor for H<<Hc2(T=0) is obtained using the solution of the Ginzburg-Landau equation in form of perturbation expansions [S.Ullah, A.T.Dorsey, PRB 44, 262 (1991)]. (ii) The error in \sigma_s(T,H,Tc) occurring due to the presence of Tc-inhomogeneity is calculated and plotted on an H-T plane diagram. These calculations use an effective medium approximation and a Gaussian distribution of Tc. (iii) Measuring the temperature dependences of a voltage, induced by a focused electron beam, we determine spatial distributions of the critical temperature for YBaCuO microbridges with a 2 micron resolution. A typical Tc-distribution dispersion is found to be approximately 1K. For such dispersion, error in \sigma_s(T,H,Tc) due to Tc-inhomogeneity exceeds 30% for magnetic fields H < 1 T and temperatures |T-Tc| < 0.5 K. (iv) Experimental R(T,H) dependences of resistance are well described by a numerical solution of a set of Kirchoff equations for the resistor network based on the measured spatial distributions of Tc and the expression for \sigma_s(T,H,Tc).Comment: REVTeX, 12 pages including 7 figures, resubmitted to Phys. Rev.

    The Effect of Chemical Doping and Hydrostatic Pressure on Tc of Y1-yCayBa2Cu3Ox Single Crystals

    Full text link
    We performed susceptibility measurements on Y1-yCayBa2Cu3Ox single crystals under high He pressure. For each Ca content various samples with different oxygen contents have been prepared to probe the influence of Ca on Tc(x), dTc/dp(x) and Tc,max. Starting from the parabolic Tc(nh) behavior we calculated nh values from Tc and Tc,max for each sample. It is shown that in the overdoped region dTc/dp can be described by a pressure induced charge transfer with dnh/dp = 3.7E-3 [1/GPa] and a dTc,max/dp value of 0.8 K/GPa, irrespective of the Ca content. In the underdoped region additional pressure effects lead to a peak in dTc/dp at approximately 0.11 holes/CuO2 plane. However, with increasing Ca content this peak is strongly depressed. This is explained in terms of an increasing disorder in the CuO chain system due to doping. Deviations in dTc/dp at very low nh values can be assigned to the ortho II ordering in the CuO chain system.Comment: 13 pages with 6 figures, accepted for publication in Physica

    Electron effects of transfer in oxide high temperature superconductors in normal phase

    No full text
    Ceramic specimens of yttrium and bismuth high temperature superconductors (HTSC), monocrystals and epitaxial films of yttrium HTSC are considered in the paper aiming at the explanation of HTSC transport property features on the base of model representations about the structure of conduction band, the clarification of principle features and detailes of the band spectrum structure of HTSC-materials of various classes, the investigation of the band parameter variation character, the development of diagnostics methods. As a result the possibility of the narrow band model use for the obtaining of the information about the structure of band spectrum and its modifications while varying of specimen composition has been displayed, the conclusion about the realization of anderson's state localization mechanism in HTSC-compounds has been done. Diagnostics new methods of the HTSC-ceramics granulation structure and non-disturbing local express-control of critical temperature values have been suggested. The method of the critical temperature value estimation has been suggestedAvailable from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio
    corecore