20 research outputs found

    Holomorphic Supercurves and Supersymmetric Sigma Models

    Full text link
    We introduce a natural generalisation of holomorphic curves to morphisms of supermanifolds, referred to as holomorphic supercurves. More precisely, supercurves are morphisms from a Riemann surface, endowed with the structure of a supermanifold which is induced by a holomorphic line bundle, to an ordinary almost complex manifold. They are called holomorphic if a generalised Cauchy-Riemann condition is satisfied. We show, by means of an action identity, that holomorphic supercurves are special extrema of a supersymmetric action functional.Comment: 30 page

    Murine muscle engineered from dermal precursors: an in vitro model for skeletal muscle generation, degeneration and fatty infiltration.

    Get PDF
    Skeletal muscle can be engineered by converting dermal precursors into muscle progenitors and differentiated myocytes. However, the efficiency of muscle development remains relatively low and it is currently unclear if this is due to poor characterization of the myogenic precursors, the protocols used for cell differentiation, or a combination of both. In this study, we characterized myogenic precursors present in murine dermospheres, and evaluated mature myotubes grown in a novel three-dimensional culture system. After 57 days of differentiation, we observed isolated, twitching myotubes followed by spontaneous contractions of the entire tissue-engineered muscle construct on an extracellular matrix (ECM). In vitro engineered myofibers expressed canonical muscle markers and exhibited a skeletal (not cardiac) muscle ultrastructure, with numerous striations and the presence of aligned, enlarged mitochondria, intertwined with sarcoplasmic reticula (SR). Engineered myofibers exhibited Na+- and Ca2+-dependent inward currents upon acetylcholine (ACh) stimulation and tetrodotoxin-sensitive spontaneous action potentials. Moreover, ACh, nicotine, and caffeine elicited cytosolic Ca2+ transients; fiber contractions coupled to these Ca2+ transients suggest that Ca2+ entry is activating calcium-induced calcium release from the SR. Blockade by d-tubocurarine of ACh-elicited inward currents and Ca2+ transients suggests nicotinic receptor involvement. Interestingly, after 1 month, engineered muscle constructs showed progressive degradation of the myofibers concomitant with fatty infiltration, paralleling the natural course of muscular degeneration. We conclude that mature myofibers may be differentiated on the ECM from myogenic precursor cells present in murine dermospheres, in an in vitro system that mimics some characteristics found in aging and muscular degeneration

    Recessive mutations in muscle-specific isoforms of FXR1 cause congenital multi-minicore myopathy

    Get PDF
    FXR1 is an alternatively spliced gene that encodes RNA binding proteins (FXR1P) involved in muscle development. In contrast to other tissues, cardiac and skeletal muscle express two FXR1P isoforms that incorporate an additional exon-15. We report that recessive mutations in this particular exon of FXR1 cause congenital multi-minicore myopathy in humans and mice. Additionally, we show that while Myf5-dependent depletion of all FXR1P isoforms is neonatal lethal, mice carrying mutations in exon-15 display non-lethal myopathies which vary in severity depending on the specific effect of each mutation on the protein

    Building Blocks for a 24GHz Phased-Array Front-End in CMOS Technology for

    Get PDF
    Abstract—According to a recent European Union report, lighting represents a significant share of electricity costs and the goal of reducing lighting power consumption by 20 % demands the coupling of light-emitting diode (LED) lights with smart sensors and communication networks. In this context, this paper proposes the integration of these three elements into a smart streetlight, incorporating a 24GHz phased-array (Ph-A) front-end (FE). The main building blocks of this Ph-A FE integrated in a low-cost 90 nm complementary metal-oxide-semiconductor (CMOS) technology are fully characterized. The selected FE’s architecture allows the implementation of transceivers as well as Doppler radar sensors functionalities. More specifically, the Ph-A technology is applied to a Doppler radar sensor in order to realize multi-lane road scanning and pedestrian detection. That way, the smart streetlight can become eco-friendly by turning on the LEDs only when necessary as well as to measure traffic parameters such as vehicle speed, type and direction. Intercommunication between the smart streetlights is based on a time-sharing mechanism that uses the same FE reconfigured as transceiver. Thanks to this functionality, the recorded traffic information can be relayed through adjacent streetlights to a control center, and control commands and warnings can be spread through the network. The system requirements are derived assuming a simplified model of the operating scenario with a typical inter-light distance of 50
    corecore