15 research outputs found
NEMO-SN1 Abyssal Cabled Observatory in the Western Ionian Sea
The NEutrinoMediterranean Observatory—Submarine
Network 1 (NEMO-SN1) seafloor observatory is located in
the central Mediterranean Sea, Western Ionian Sea, off Eastern Sicily (Southern Italy) at 2100-m water depth, 25 km from the harbor of the city of Catania. It is a prototype of a cabled deep-sea multiparameter observatory and the first one operating with real-time data transmission in Europe since 2005. NEMO-SN1 is also the first-established node of the European Multidisciplinary Seafloor Observatory (EMSO), one of the incoming European large-scale research infrastructures included in the Roadmap of the European Strategy Forum on Research Infrastructures
(ESFRI) since 2006. EMSO will specifically address long-term
monitoring of environmental processes related to marine ecosystems, marine mammals, climate change, and geohazards
Expansion cone for the 3-inch PMTs of the KM3NeT optical modules
[EN] Detection of high-energy neutrinos from distant astrophysical sources will open a new window on the Universe. The detection principle exploits the measurement of Cherenkov light emitted by charged particles resulting from neutrino interactions in the matter containing the telescope. A novel multi-PMT digital optical module (DOM) was developed to contain 31 3-inch photomultiplier tubes (PMTs). In order to maximize the detector sensitivity, each PMT will be surrounded by an expansion cone which collects photons that would otherwise miss the photocathode. Results for various angles of incidence with respect to the PMT surface indicate an increase in collection efficiency by 30% on average for angles up to 45 degrees with respect to the perpendicular. Ray-tracing calculations could reproduce the measurements, allowing to estimate an increase in the overall photocathode sensitivity, integrated over all angles of incidence, by 27% (for a single PMT). Prototype DOMs, being built by the KM3NeT consortium, will be equipped with these expansion cones.This work is supported through the EU, FP6 Contract no. 011937, FP7 grant agreement no. 212252, and the Dutch Ministry of Education, Culture and Science.Adrián MartĂnez, S.; Ageron, M.; Aguilar, JA.; Aharonian, F.; Aiello, S.; Albert, A.; Alexandri, M.... (2013). Expansion cone for the 3-inch PMTs of the KM3NeT optical modules. Journal of Instrumentation. 8(3):1-19. https://doi.org/10.1088/1748-0221/8/03/T03006S1198
NEMO-SN1 Abyssal Cabled Observatory in the Western Ionian Sea
The NEutrinoMediterranean Observatory-Submarine Network 1 (NEMO-SN1) seafloor observatory is located in the central Mediterranean Sea, Western Ionian Sea, off Eastern Sicily (Southern Italy) at 2100-m water depth, 25 km from the harbor of the city of Catania. It is a prototype of a cabled deep-sea multiparameter observatory and the first one operating with real-time data transmission in Europe since 2005. NEMO-SN1 is also the first-established node of the European Multidisciplinary Seafloor Observatory (EMSO), one of the incoming European large-scale research infrastructures included in the Roadmap of the European Strategy Forum on Research Infrastructures (ESFRI) since 2006. EMSO will specifically address long-term monitoring of environmental processes related to marine ecosystems, climate change, and geohazards. NEMO-SN1 has been deployed and developed over the last decade thanks to Italian funding and to the European Commission (EC) project European Seas Observatory NETwork-Network of Excellence (ESONET-NoE, 2007-2011) that funded the Listening to the Deep Ocean-Demonstration Mission (LIDO-DM) and a technological interoperability test (http://www.esonet-emso.org). NEMO-SN1 is performing geophysical and environmental long-term monitoring by acquiring seismological, geomagnetic, gravimetric, accelerometric, physico-oceanographic, hydroacoustic, and bioacoustic measurements. Scientific objectives include studying seismic signals, tsunami generation and warnings, its hydroacoustic precursors, and ambient noise characterization in terms of marine mammal sounds, environmental and anthropogenic sources. NEMO-SN1 is also an important test site for the construction of the Kilometre-Cube Underwater Neutrino Telescope (KM3NeT), another large-scale research infrastructure included in the ESFRI Roadmap based on a large volume neutrino telescope. The description of the observatory and its most recent implementations is presented. On June 9, 2012, NEMO-SN1 was successfully deployed and is working in real time
GEMS: Underwater spectrometer for long-term radioactivity measurements
GEMS (Gamma Energy Marine Spectrometer) is a prototype of an autonomous radioactivity sensor for underwater measurements, developed in the framework for a development of a submarine telescope for neutrino detection (KM3NeT Design Study Project). The spectrometer is highly sensitive to gamma rays produced by 40K decays but it can detect other natural (e.g., 238U,232Th) and anthropogenic radio-nuclides (e.g., 137Cs). GEMS was firstly tested and calibrated in the laboratory using known sources and it was successfully deployed for a long-term (6 months) monitoring at a depth of 3200 m in the Ionian Sea (Capo Passero, offshore Eastern Sicily). The instrument recorded data for the whole deployment period within the expected specifications. This monitoring provided, for the first time, a continuous time-series of radioactivity in deep-sea
GEMS: Underwater spectrometer for long-term radioactivity measurements
GEMS (Gamma Energy Marine Spectrometer) is a prototype of an autonomous radioactivity sensor for underwater measurements, developed in the framework for a development of a submarine telescope for neutrino detection (KM3NeT Design Study Project). The spectrometer is highly sensitive to gamma rays produced by 40K decays but it can detect other natural (e.g., 238U,232Th) and anthropogenic radio-nuclides (e.g., 137Cs). GEMS was firstly tested and calibrated in the laboratory using known sources and it was successfully deployed for a long-term (6 months) monitoring at a depth of 3200 m in the Ionian Sea (Capo Passero, offshore Eastern Sicily). The instrument recorded data for the whole deployment period within the expected specifications. This monitoring provided, for the first time, a continuous time-series of radioactivity in deep-sea
NEMO-SN1 (Western Ionian Sea, off Eastern Sicily): Example of architecture of a cabled observatory
NEMO-SN1, located in the central Mediterranean Sea, Western Ionian Sea, off Eastern Sicily Island (Southern Italy) at 2100 m water depth, 25 km from the harbour of the city of Catania, is a prototype of a cabled deep-sea multiparameter observatory and the first operating with real-time data transmission in Europe since 2005. NEMO-SN1 is also the first-established node of EMSO (European Multidisciplinary Seafloor Observatory, http://emso-eu.org), one of the incoming European large-scale research infrastructure included since 2006 in the Roadmap of the ESFRI (European Strategy Forum on Research Infrastructures, http://cordis.europa.eu/esfri/roadmap.htm), which will specifically address long-term monitoring of environmental processes related to Marine Ecosystems, Climate Change and Geo-hazards. NEMO-SN1 has been deployed and developed over the last decade thanks to Italian resources and to the EC project ESONET-NoE (European Seas Observatory NETwork Network of Excellence, 20072011) that funded the LIDO-DM (Listening to the Deep Ocean Demonstration Mission) and a technological interoperability test (http://www.esonet-emso.org/ esonet-noe/). NEMO-SN1 is performing geophysical and environmental long-term monitoring by acquiring seismological, geomagnetic, gravimetric, accelerometric, physico-oceanographic, hydro-acoustic, bio-acoustic measurements specifically related to earthquakes and tsunamis generation and ambient noise characterisation in term of marine mammal sounds, environmental and anthropogenic sources. A further main feature of NEMO-SN1 is to be an important test-site for the construction of KM3NeT (Kilometre-Cube Underwater Neutrino Telescope, http://www.km3net.org/), another large-scale research infrastructure included in the ESFRI Roadmap constituted by a large volume neutrino telescope. The description of the observatory and the most recent data acquired will be presented and framed in the general objectives of EMSO. © 2011 IEEE