92 research outputs found

    Escherichia coli challenge and one type of smectite alter intestinal barrier of pigs

    Get PDF
    An experiment was conducted to determine how an E. coli challenge and dietary clays affect the intestinal barrier of pigs. Two groups of 32 pigs (initial BW: 6.9 ± 1.0 kg) were distributed in a 2 × 4 factorial arrangement of a randomized complete block design (2 challenge treatments: sham or E. coli, and 4 dietary treatments: control, 0.3% smectite A, 0.3% smectite B and 0.3% zeolite), with 8 replicates total. Diarrhea score, growth performance, goblet cell size and number, bacterial translocation from intestinal lumen to lymph nodes, intestinal morphology, and relative amounts of sulfo and sialo mucins were measured. The E. coli challenge reduced performance, increased goblet cell size and number in the ileum, increased bacterial translocation from the intestinal lumen to the lymph nodes, and increased ileal crypt depth. One of the clays (smectite A) tended to increase goblet cell size in ileum, which may indicate enhanced protection. In conclusion, E. coli infection degrades intestinal barrier integrity but smectite A may enhance it

    Transcriptome profiling of the small intestinal epithelium in germfree versus conventional piglets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To gain insight into host-microbe interactions in a piglet model, a functional genomics approach was used to address the working hypothesis that transcriptionally regulated genes associated with promoting epithelial barrier function are activated as a defensive response to the intestinal microbiota. Cesarean-derived germfree (GF) newborn piglets were colonized with adult swine feces, and villus and crypt epithelial cell transcriptomes from colonized and GF neonatal piglets were compared using laser-capture microdissection and high-density porcine oligonucleotide microarray technology.</p> <p>Results</p> <p>Consistent with our hypothesis, resident microbiota induced the expression of genes contributing to intestinal epithelial cell turnover, mucus biosynthesis, and priming of the immune system. Furthermore, differential expression of genes associated with antigen presentation (pan SLA class I, <it>B2M</it>, <it>TAP1 </it>and <it>TAPBP</it>) demonstrated that microbiota induced immune responses using a distinct regulatory mechanism common for these genes. Specifically, gene network analysis revealed that microbial colonization activated both type I (IFNAR) and type II (IFNGR) interferon receptor mediated signaling cascades leading to enhanced expression of signal transducer and activator of transcription 1 (STAT1), STAT2 and IFN regulatory factor 7 (IRF7) transcription factors and the induction of IFN-inducible genes as a reflection of intestinal epithelial inflammation. In addition, activated RNA expression of NF-kappa-B inhibitor alpha (<it>NFκBIA</it>; a.k.a I-kappa-B-alpha, IKBα) and toll interacting protein (<it>TOLLIP</it>), both inhibitors of inflammation, along with downregulated expression of the immunoregulatory transcription factor GATA binding protein-1 (<it>GATA1</it>) is consistent with the maintenance of intestinal homeostasis.</p> <p>Conclusion</p> <p>This study supports the concept that the intestinal epithelium has evolved to maintain a physiological state of inflammation with respect to continuous microbial exposure, which serves to sustain a tight intestinal barrier while preventing overt inflammatory responses that would compromise barrier function.</p

    International cancer microbiome consortium consensus statement on the role of the human microbiome in carcinogenesis

    Get PDF
    Objective In this consensus statement, an international panel of experts deliver their opinions on key questions regarding the contribution of the human microbiome to carcinogenesis.Design International experts in oncology and/or microbiome research were approached by personal communication to form a panel. A structured, iterative, methodology based around a 1-day roundtable discussion was employed to derive expert consensus on key questions in microbiome-oncology research.Results Some 18 experts convened for the roundtable discussion and five key questions were identified regarding: (1) the relevance of dysbiosis/an altered gut microbiome to carcinogenesis; (2) potential mechanisms of microbiota-induced carcinogenesis; (3) conceptual frameworks describing how the human microbiome may drive carcinogenesis; (4) causation versus association; and (5) future directions for research in the field.The panel considered that, despite mechanistic and supporting evidence from animal and human studies, there is currently no direct evidence that the human commensal microbiome is a key determinant in the aetiopathogenesis of cancer. The panel cited the lack of large longitudinal, cohort studies as a principal deciding factor and agreed that this should be a future research priority. However, while acknowledging gaps in the evidence, expert opinion was that the microbiome, alongside environmental factors and an epigenetically/genetically vulnerable host, represents one apex of a tripartite, multidirectional interactome that drives carcinogenesis.Conclusion Data from longitudinal cohort studies are needed to confirm the role of the human microbiome as a key driver in the aetiopathogenesis of cancer

    On the Relationship between Sialomucin and Sulfomucin Expression and Hydrogenotrophic Microbes in the Human Colonic Mucosa

    Get PDF
    The colonic mucus layer is comprised primarily of acidomucins, which provide viscous properties and can be broadly classified into sialomucins or sulfomucins based on the presence of terminating sialic acid or sulfate groups. Differences in acidomucin chemotypes have been observed in diseases such as colorectal cancer and inflammatory bowel disease, and variation in sialo- and sulfomucin content may influence microbial colonization. For example, sulfate derived from sulfomucin degradation may promote the colonization of sulfate-reducing bacteria (SRB), which through sulfate respiration generate the genotoxic gas hydrogen sulfide. Here, paired biopsies from right colon, left colon, and rectum of 20 subjects undergoing routine screening colonoscopies were collected to enable parallel histochemical and microbiological studies. Goblet cell sialo- and sulfomucins in each biopsy were distinguished histochemically and quantified. Quantitative PCR and multivariate analyses were used to examine the abundance of hydrogenotrophic microbial groups and SRB genera relative to acidomucin profiles. Regional variation was observed in sialomucins and sulfomucins with the greatest abundance of each found in the rectum. Mucin composition did not appear to influence the abundance of SRB or other hydrogenotrophic microbiota but correlated with the composition of different SRB genera. A higher sulfomucin proportion correlated with higher quantities of Desulfobacter, Desulfobulbus and Desulfotomaculum, relative to the predominant Desulfovibrio genus. Thus, acidomucin composition may influence bacterial sulfate respiration in the human colon, which may in turn impact mucosal homeostasis. These results stress the need to consider mucus characteristics in the context of studies of the microbiome that target intestinal diseases

    Pyrosequencing-Based Analysis of the Mucosal Microbiota in Healthy Individuals Reveals Ubiquitous Bacterial Groups and Micro-Heterogeneity

    Get PDF
    This study used 16S rRNA-based pyrosequencing to examine the microbial community that is closely associated with the colonic mucosa of five healthy individuals. Spatial heterogeneity in microbiota was measured at right colon, left colon and rectum, and between biopsy duplicates spaced 1 cm apart. The data demonstrate that mucosal-associated microbiota is comprised of Firmicutes (50.9%±21.3%), Bacteroidetes (40.2%±23.8%) and Proteobacteria (8.6%±4.7%), and that interindividual differences were apparent. Among the genera, Bacteroides, Leuconostoc and Weissella were present at high abundance (4.6% to 41.2%) in more than 90% of the studied biopsy samples. Lactococcus, Streptococcus, Acidovorax, Acinetobacter, Blautia, Faecalibacterium, Veillonella, and several unclassified bacterial groups were also ubiquitously present at an abundance <7.0% of total microbial community. With the exception of one individual, the mucosal-associated microbiota was relatively homogeneous along the colon (average 61% Bray-Curtis similarity). However, micro-heterogeneity was observed in biopsy duplicates within defined colonic sites for three of the individuals. A weak but significant Mantel correlation of 0.13 was observed between the abundance of acidomucins and mucosal-associated microbiota (P-value  =  0.04), indicating that the localized biochemical differences may contribute in part to the micro-heterogeneity. This study provided a detailed insight to the baseline mucosal microbiota along the colon, and revealed the existence of micro-heterogeneity within defined colonic sites for certain individuals

    Plasticity in the Human Gut Microbiome Defies Evolutionary Constraints

    Get PDF
    The gut microbiome of primates, including humans, is reported to closely follow host evolutionary history, with gut microbiome composition being specific to the genetic background of its primate host. However, the comparative models used to date have mainly included a limited set of closely related primates. To further understand the forces that shape the primate gut microbiome, with reference to human populations, we expanded the comparative analysis of variation among gut microbiome compositions and their primate hosts, including 9 different primate species and 4 human groups characterized by a diverse set of subsistence patterns (n = 448 samples). The results show that the taxonomic composition of the human gut microbiome, at the genus level, exhibits increased compositional plasticity. Specifically, we show unexpected similarities between African Old World monkeys that rely on eclectic foraging and human populations engaging in nonindustrial subsistence patterns; these similarities transcend host phylogenetic constraints. Thus, instead of following evolutionary trends that would make their microbiomes more similar to that of conspecifics or more phylogenetically similar apes, gut microbiome composition in humans from nonindustrial populations resembles that of generalist cercopithecine monkeys. We also document that wild cercopithecine monkeys with eclectic diets and humans following nonindustrial subsistence patterns harbor high gut microbiome diversity that is not only higher than that seen in humans engaging in industrialized lifestyles but also higher compared to wild primates that typically consume fiber-rich diets

    The Effect of a High-Fat Diet and Grape Powder on the Abundance of Sulfidogenic Bacteria in the Colonic Digesta of C57BL/6J Mice

    Get PDF
    Recently scientists have made and interesting link with colon cancer, diet and Bilophila wadsworthia. For 16 weeks 50 C57BL/6J mice were fed four different high-fat diets and one low-fat diet each containing certain percentages of grape powder. At the end of the 16 weeks, colonic digesta samples were taken from the mice in order to analyze how much bacteria existed in their colon at the end of the 16 weeks. The B. wadsworthia abundance was higher in the low-fat diet than the 3% and 5% grape powder diets, suggesting other microbial targets may be appropriate for analysis.Ope
    corecore