52 research outputs found

    Big Bang Nucleosynthesis Constraints on the Self-Gravity of Pressure

    Get PDF
    Using big bang nucleosynthesis and present, high-precision measurements of light element abundances, we constrain the self-gravity of radiation pressure in the early universe. The self-gravity of pressure is strictly non-Newtonian, and thus the constraints we set provide a direct test of this prediction of general relativity and of the standard, Robertson-Walker-Friedmann cosmology.Comment: 5 pages, 1 figure. This paper was developed from an earlier version which was posted as arXiv:0707.358

    Possible modification of the cooling index of interstellar helium pickup ions by electron impact ionization in the inner heliosphere

    Full text link
    Interstellar neutrals penetrating into the inner heliosphere are ionized by photoionization, charge exchange with solar wind ions, and electron impact ionization. These processes comprise the first step in the evolution of interstellar pickup ion (PUI) distributions. Typically, PUI distributions have been described in terms of velocity distribution functions that cool adiabatically under solar wind expansion, with a cooling index of 3/2. Recently, the cooling index has been determined experimentally in observations of He PUI distributions with Advanced Composition Explorer (ACE)/Solar Wind Ion Composition Spectrometer and found to vary substantially over the solar cycle. The experimental determination of the cooling index depends on the knowledge of the ionization rates and their spatial variation. Usually, ionization rates increase with 1/ r 2 as neutral particles approach the Sun, which is not exactly true for electron impact ionization, because the electron temperature increases with decreasing distance from the Sun due to the complexity of its distributions and different radial gradients in temperature. This different dependence on distance may become important in the study of the evolution of PUI distributions and is suspected as one of the potential reasons for the observed variation of the cooling index. Therefore, we investigate in this paper the impact of electron ionization on the variability of the cooling index. We find that the deviation of the electron ionization rate from the canonical 1 /r 2 behavior of other ionization processes plays only a minor role. Key Points The influence of electron impact ionization is negligible Its influence is also small even in the compressionsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109291/1/jgra51316.pd

    A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo

    Get PDF
    The current gene regulatory network (GRN) for the sea urchin embryo pertains to pregastrular specification functions in the endomesodermal territories. Here we extend gene regulatory network analysis to the adjacent oral and aboral ectoderm territories over the same period. A large fraction of the regulatory genes predicted by the sea urchin genome project and shown in ancillary studies to be expressed in either oral or aboral ectoderm by 24 h are included, though universally expressed and pan-ectodermal regulatory genes are in general not. The loci of expression of these genes have been determined by whole mount in situ hybridization. We have carried out a global perturbation analysis in which expression of each gene was interrupted by introduction of morpholino antisense oligonucleotide, and the effects on all other genes were measured quantitatively, both by QPCR and by a new instrumental technology (NanoString Technologies nCounter Analysis System). At its current stage the network model, built in BioTapestry, includes 22 genes encoding transcription factors, 4 genes encoding known signaling ligands, and 3 genes that are yet unknown but are predicted to perform specific roles. Evidence emerged from the analysis pointing to distinctive subcircuit features observed earlier in other parts of the GRN, including a double negative transcriptional regulatory gate, and dynamic state lockdowns by feedback interactions. While much of the regulatory apparatus is downstream of Nodal signaling, as expected from previous observations, there are also cohorts of independently activated oral and aboral ectoderm regulatory genes, and we predict yet unidentified signaling interactions between oral and aboral territories

    Water in evolved lunar rocks: Evidence for multiple reservoirs

    Get PDF
    We have measured the abundance and isotopic composition of water in apatites from several lunar rocks representing Potassium (K), Rare Earth Elements (REE), and Phosphorus (P) − KREEP − rich lithologies, including felsites, quartz monzodiorites (QMDs), a troctolite, and an alkali anorthosite. The H-isotope data from apatite provide evidence for multiple reservoirs in the lunar interior. Apatite measurements from some KREEP-rich intrusive rocks display moderately elevated δD signatures, while other samples show δD signatures similar to the range known for the terrestrial upper mantle. Apatite grains in Apollo 15 quartz monzodiorites have the lowest δD values measured from the Moon so far (as low as −749‰), and could potentially represent a D-depleted reservoir in the lunar interior that had not been identified until now. Apatite in all of these intrusive rocks contains 6500 ppm H2O). Complexities in partitioning of volatiles into apatite make this comparison uncertain, but measurements of residual glass in KREEP basalt fragments in breccia 15358 independently show that the KREEP basaltic magmas were low in water. The source of 15358 contained ∼10 ppm H2O, about an order of magnitude lower than the source of the Apollo 17 pyroclastic glass beads, suggesting potential variations in the distribution of water in the lunar interior

    Acanthamoeba castellanii

    No full text

    Conversion from Extracorporeal Membrane Oxygenation to Total Cardiopulmonary Bypass: A Simplified Method

    No full text
    Pediatric patients who have preoperative hemodynamic instability or postoperative cardiac decompensation may frequently require the use of extracorporeal membrane oxygenation (ECMO) for stabilization of cardiac and respiratory function. While ECMO can be a therapeutic treatment for the congenital pediatric patient, it does not allow the additional functions of a complete cardiopulmonary bypass (CPB) circuit should subsequent surgical revision in the operating room be required. This paper will discuss our approach to converting the ECMO circuit to total cardiopulmonary bypass allowing the use of cardioplegia, cardiotomy suction, and modified ultrafiltration. This technique allows the conversion to CPB without ceasing support to the critically ill patient or exposing them to additional blood products or surface area in the priming of a new extracorporeal circuit. In addition, this circuit design allows for the resumption of ECMO support utilizing the same circuit if the patient necessitates it

    Interaction of Pseudomonas aeruginosa with epithelial cells: Identification of differentially regulated genes by expression microarray analysis of human cDNAs

    No full text
    Pseudomonas aeruginosa is an opportunistic pathogen that plays a major role in lung function deterioration in cystic fibrosis patients. To identify critical host responses during infection, we have used high-density DNA microarrays, consisting of 1,506 human cDNA clones, to monitor gene expression in the A549 lung pneumocyte cell line during exposure to P. aeruginosa. We have identified host genes that are differentially expressed upon infection, several of which require interaction with P. aeruginosa and the expression of the major subunit of type IV pili, PilA. Differential expression of genes involved in various cellular functions was identified, and we selected the gene encoding the transcription factor interferon regulatory factor 1 (IRF-1) for further analysis. The levels of the IRF-1 transcript increased 3- to 4-fold in A549 cells after adherence by P. aeruginosa. A similar increase of IRF-1 mRNA was observed in A549 cells exposed to wild-type P. aeruginosa when compared to an isogenic, nonpiliated strain. However, this difference was abolished when serum was present during the incubation of bacteria. Exposure of A549 cells to purified P. aeruginosa lipopolysaccharide did not result in a significant increase in IRF-1 mRNA. Although the P. aeruginosa-induced increased IRF-1 expression depends on the presence of bacterial adhesin, our findings do not preclude the possibility that other bacterial products are responsible for IRF-1 activation, which is enhanced by bacterial adherence to cells. These data show that microarray technology can be an important tool for studying the complex interplay between bacterial pathogens and host
    • …
    corecore