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Gary R.; Anand, Mahesh and Taylor, G.Jeffrey (2016). Water in evolved lunar rocks: Evidence for multiple reservoirs.
Geochimica et Cosmochimica Acta, 188 pp. 244–260.

For guidance on citations see FAQs.

c© 2016 Elsevier

Version: Not Set

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1016/j.gca.2016.05.030

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1016/j.gca.2016.05.030
http://oro.open.ac.uk/policies.html


Accepted Manuscript

Water in evolved lunar rocks: Evidence for multiple reservoirs

Katharine L. Robinson, Jessica J. Barnes, Kazuhide Nagashima, Aurélien
Thomen, Ian A. Franchi, Gary R. Huss, Mahesh Anand, G. Jeffrey Taylor

PII: S0016-7037(16)30273-3
DOI: http://dx.doi.org/10.1016/j.gca.2016.05.030
Reference: GCA 9779

To appear in: Geochimica et Cosmochimica Acta

Received Date: 26 June 2015
Accepted Date: 16 May 2016

Please cite this article as: Robinson, K.L., Barnes, J.J., Nagashima, K., Thomen, A., Franchi, I.A., Huss, G.R.,
Anand, M., Jeffrey Taylor, G., Water in evolved lunar rocks: Evidence for multiple reservoirs, Geochimica et
Cosmochimica Acta (2016), doi: http://dx.doi.org/10.1016/j.gca.2016.05.030

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.gca.2016.05.030
http://dx.doi.org/10.1016/j.gca.2016.05.030


  

1 

 

                        

 

 

 

Water in evolved lunar rocks: Evidence for multiple reservoirs 

Katharine L. Robinson*
,a,b,c

, Jessica J. Barnes
d,e

, Kazuhide Nagashima
a
, Aurélien Thomen

a
,  Ian A. 

Franchi
e
 , Gary R. Huss

a,b,c
, Mahesh Anand

d,e
, G. Jeffrey Taylor

a,b,c 

 

a
 Hawaii Institute of Geophysics and Planetology, 1680 East-West Rd. POST 602, Honolulu, HI 

96822, USA   

b
 University of Hawaii NASA Astrobiology Institute, Institute for Astronomy, University of 

Hawai’i, 2680 Woodlawn Drive, Honolulu, Hawaii 96822-1839, USA.   

 
c 
Geology and Geophysics, University of Hawaii at Manoa, 1680 East-West Rd. POST 602, 

Honolulu, HI 96822, USA  

d 
Planetary and Space Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK,  

e 
Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 

5BD, UK. 

 

 

*Corresponding Author: Katharine Robinson 

*Now at Planetary and Space Sciences, The Open University.  

 email: krobinson@higp.hawaii.edu 

phone: (812) 251-7409 

 

 

Manuscript submitted to Geochimica et Cosmochimica Acta June 2015 

Revised and resubmitted, March 2016 

Revised and resubmitted, May 2016 

 

Main text, references, table, and figure captions 

 

 

 

 



  

2 

 

Water in evolved lunar rocks: Evidence for Multiple Reservoirs  

 

Abstract 1 
We have measured the abundance and isotopic composition of water in apatites from 2 

several lunar rocks representing Potassium (K), Rare Earth Elements (REE), and Phosphorus (P) -  3 

KREEP - rich lithologies, including felsites, quartz monzodiorites (QMDs), a troctolite, and  alkali 4 

anorthosite.  The H-isotope data from apatite provide evidence for multiple reservoirs in the 5 

lunar interior.  Apatite measurements from some KREEP-rich intrusive rocks display moderately 6 

elevated δD signatures, while other samples show δD signatures similar to the range known for 7 

the terrestrial upper mantle.  Apatite grains in Apollo 15 quartz monzodiorites have the lowest 8 

δD values measured from the Moon so far (as low as - 749 ‰), and could potentially represent 9 

a D-depleted reservoir in the lunar interior that had not been identified until now. Apatite in all 10 

of these intrusive rocks contains < 267 ppm H2O, which is relatively low compared to apatites 11 

from the majority of studied mare basalts (200 to > 6500 ppm H2O).  Complexities in 12 

partitioning of volatiles into apatite make this comparison uncertain, but measurements of 13 

residual glass in KREEP basalt fragments in breccia 15358 independently show that the KREEP 14 

basaltic magmas were low in water.  The source of 15358 contained ∼ 10 ppm H2O, about an 15 

order of magnitude lower than the source of the Apollo 17 pyroclastic glass beads, suggesting 16 

potential variations in the distribution of water in the lunar interior.   17 

1. Introduction.  18 

The detection of water in lunar volcanic glasses, apatites, and melt inclusions has 19 

implications for planetary accretion, the source(s) of water in the Earth-Moon system, and the 20 

role of water in lunar evolution (Saal et al., 2008; McCubbin et al., 2010; Boyce et al., 2010; 21 

Greenwood et al., 2011; Hauri et al., 2011; Tartèse et al., 2013, 2014; Barnes et al., 2013, 22 

2014a). (In this paper we use “water” as a shorthand way of referring to all hydrogen species, 23 

H2O, OH, and H2.   More than one may be present, depending on oxygen fugacity and pressure 24 

(e.g., Hirschmann et al., 2012.)  Recent work has shown that apatites in mare basalts contain 25 

appreciable amounts of water, and are generally enriched in deuterium (
2
H, or D) with respect 26 
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to Earth, possibly due to the addition of D-rich material early in the Moon’s history (Greenwood 27 

et al., 2011) or to the loss of H preferentially over D during magma degassing (e.g.  Saal et al. 28 

2008; Tartèse and Anand, 2013; Tartèse et al., 2013, Saal et al., 2013). The final fraction of the 29 

global lunar magma ocean (LMO) model is considered to be urKREEP, so named for its 30 

enrichment in incompatible elements compared to other lunar materials (e.g., Warren and 31 

Wasson, 1979).  Because water behaves as an incompatible element in major silicate phases 32 

that formed during the LMO crystallization (Koga et al., 2003; Aubaud et al., 2004; Grant et al. 33 

2007), KREEP-rich rocks are expected to be enriched in water relative to other lunar rocks.  34 

Many KREEP-rich lithologies consist of evolved rocks that formed as intrusions, which means 35 

that they would have avoided or experienced minimal water loss (unlike the mare basalts), and 36 

potential hydrogen isotope fractionation due to magmatic degassing.   37 

 The mineral apatite [Ca5(PO4)3(F,Cl,OH)] incorporates OH into its crystal structure, making 38 

it a potential recorder of the concentration of OH in magma at the time of apatite 39 

crystallization.  The OH in apatite is resistant to exchanging O or H with adsorbed terrestrial 40 

water on thin section surfaces (Greenwood et al., 2011) hence it is useful for H isotopic 41 

measurements by secondary ion mass spectrometry (SIMS). The D/H ratio, expressed as δD (‰) 42 

= ([D/H]sample/[D/H]standard - 1) x 1000, relative to Vienna Standard Mean Ocean Water (V-43 

SMOW),  is important for identifying the source of the Moon’s water and the extent of water 44 

loss during magmatic processing (e.g., Greenwood et al., 2011; Elkins-Tanton and Grove, 2011; 45 

Tartèse et al., 2013).   Previous studies have demonstrated that the water content of lunar 46 

apatite varies among different rock types.  Apatites in Apollo mare basalts record the highest 47 

H2O contents (up to ∼7500 ppm) and δD (+390 to +1100‰) (McCubbin et al., 2010; 48 

Greenwoood et al., 2011,; Barnes et al., 2013; Tartèse et al., 2013)
 
, while apatites in more 49 

evolved, KREEP-related rocks generally have lower H2O contents (< 3000 ppm) and δD values (-50 

384 to +791‰, Greenwood et al., 2011; Barnes et al., 2014a; Tartèse et al., 2014; Robinson et 51 

al., 2013, Robinson and Taylor, 2014).  52 

Though it was initially thought that apatite water contents could be used to infer initial 53 

magmatic water abundances (McCubbin et al., 2010, Boyce et al., 2010, Tartèse et al, 2013, 54 
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2014, Barnes et al. 2014a), Boyce et al. (2014) demonstrated that the F-Cl-OH partitioning into 55 

apatite is not well-described by a simple apatite-melt partition coefficient.  Apatite water 56 

content thus cannot be used to quantitatively determine the amount of water in the co-existing 57 

melt, unless the F or Cl content are also known for both melt and apatite, and that it can be 58 

confirmed that apatite crystalized in equilibrium with the melt.  However, the measured D/H 59 

ratios are still useful for gaining insights into processes that might have affected the parental 60 

magmas. 61 

Rocks formed in an intrusive environment could have experienced minimal D-H 62 

fractionation and water loss prior to apatite crystallization because they form at pressures 63 

where water is far more soluble in silicate melt than at low pressures near or on the surface 64 

(e.g., Dixon et al., 1995).  Water solubility in magmas decreases with decreasing pressure, so 65 

when a hydrous magma approaches a planetary surface, the melt degasses and water is lost 66 

assuming water is present as OH and H2O.  Diffusion modelling of water loss from volcanic lunar 67 

pyroclastic glasses indicates that they lost up to 98% of their initial water content upon 68 

eruption (Saal et al., 2008).  Mare basaltic magmas would also have degassed during eruption 69 

onto the lunar surface, but probably less than the 98% loss experienced by pyroclastic glasses.  70 

Based on water contents of melt inclusions in olivine from subaerial and submarine Hawaiian 71 

lavas (which have little water loss due to the pressure at which they erupted; Hauri 2002), we 72 

estimate that lava flows lose up to 90% of their pre-eruptive H2O. Low-Ti mare magmas could 73 

have lost 85 to 99% of their pre-eruptive water contents (Tartèse et al., 2013), but such 74 

estimates assume an initial D/H ratio.  The degassing of hydrogen from a magma or lava also 75 

fractionates lighter H from heavier D, especially if H2 is lost rather than H2O (e.g. Richet et al., 76 

1977; Tartèse and Anand 2013; Tartèse et al., 2013).  Degassing experiments with apatite 77 

suggest that volatile loss occurs rapidly in extrusive magmas, and that apatite, which forms late, 78 

will not preserve pre-eruption volatile contents and will instead reflect the post-degassing 79 

volatile composition of the magma (Ustunisik et al., 2015).  The erupted mare basalts have the 80 

highest δD values (up to ∼+1100‰) found in lunar rocks so far (Greenwood et al., 2011; Barnes 81 

et al., 2013; Tartèse et al., 2013).     82 
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Apatite in intrusive rocks may represent a more pristine sampling of the lunar interior 83 

water than the water bound in apatites in the mare basalts, due to their formation at depth at 84 

higher pressures (Robinson et al., 2013; Robinson and Taylor, 2014; Barnes et al., 2014a).  85 

Reaction relations in symplectitic intergrowths in troctolite 76535 indicate a depth of origin of 86 

∼40 km (Gooley et al., 1974; McCallum et al., 2006), corresponding to a pressure of over 1.5 kb. 87 

On the other hand, gabbronorite sample 76255 may have formed as shallow as a few 88 

kilometers (McCallum et al., 2006), and quartz-monzodiorite 14161,7373 as shallow as 1 km 89 

(Jolliff et al., 1999), at a pressure of 50 b.  The liquidus temperatures and presence of quartz in 90 

highly fractionated lunar felsites (Hess et al., 1975; Hess et al. 1978; Hess et al. 1989; Robinson 91 

and Taylor, 2011; Robinson et al., 2015) indicate crystallization at a pressure of at least ∼1 kb 92 

(Tuttle and Bowen, 1958), corresponding to a depth of over 20 km, assuming a crustal density 93 

of 2550 kg/m
3
 (Wieczorek et al., 2013). Up to 3 wt. % H2O is soluble in rhyolitic melts at ∼1kb, 94 

and even 0.5 wt.% would have been soluble at the 50 b pressure experienced by the parental 95 

melt for QMD 14161, 7373  (VolatileCalc, Newman and Lowenstern 2002; Jolliff et al. 1999).  96 

Common mineral phases associated with hydrous melts such as amphibole and micas have 97 

never been reported in lunar rocks, and no lunar magma has been shown to have contained 98 

weight percent levels of water (e.g. Robinson and Taylor, 2014 and references therein).  While 99 

the concentration of water in the melt would have increased during crystallization, it would 100 

have had to reach weight percent levels to degas before apatite crystallization began and 101 

removed F, Cl, and OH from the melt (Boyce et al., 2014).  Assuming that water is completely 102 

incompatible in the crystallizing silicates and that a magma had an initial H2O content of 0.1 103 

wt% (similar to A17 melt inclusions, Saal et al., 2013), the H2O concentration would have only 104 

increased to 1 wt.% after 90% crystallization.  Apatite forms after 90% crystallization in basaltic 105 

systems, and earlier in KREEP-rich melts (Harrison and Watson, 1984; Tartèse and Anand, 2013; 106 

Tartèse et al. 2014). Unless they were exceptionally water-rich, water would have remained 107 

soluble in the parental melts for all the KREEP-rich intrusive rocks discussed here.   108 

While H loss by degassing may not occur in the KREEP-rich intrusive rocks, their H isotopes 109 

could be affected by diffusion.  Studies of melt inclusions in basalts show that lighter H can 110 

escape from melt inclusions by diffusion, therefore enriching heavier D in the melt inclusion 111 
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over time (Gaetani et al., 2012, Bucholz et al., 2013).  It is unclear if a similar process affected 112 

the H isotopes in apatite from the KREEP-rich intrusive rocks, or if H from country rock 113 

surrounding the magma bodies could have been incorporated.  However, in order for H to be 114 

lost (or gained), it would have to diffuse through either a liquid or solid medium.  This would 115 

have a less extreme fractionation effect than degassing into vacuum or a low-pressure 116 

environment (Bucholz et al., 2013).  A magmatic system is more complex than a melt inclusion, 117 

and some water loss and H isotope fractionation might occur, but apatite in a rock formed 118 

intrusively is generally more likely to have retained the isotopic composition of lunar interior 119 

water than rapidly degassed samples such as apatite in mare basalts or glass in pyroclastics.      120 

If water was present in the lunar magma ocean, it should be highly concentrated in KREEP-121 

rich materials, assuming no significant loss occurred during magma ocean crystallization and 122 

subsequent cumulate overturn (Tartèse et al., 2014).   Anything KREEP-rich or derived from 123 

KREEP basaltic magmas should also be enriched in water. However, it is not a simple path from 124 

late-stage magma ocean products to KREEP-rich or KREEP-related magmas, which formed 125 

either by the assimilation of the urKREEP component by rising Mg-rich diapirs at the base of the 126 

lunar crust, or by the partial melting of hybrid mantle sources, formed by sinking urKREEP (and 127 

other dense components) mixing with Mg-rich olivine-orthopyroxene cumulates (Shearer and 128 

Floss, 1999; Shearer and Papike, 2005; Elardo et al, 2011). Regardless of the formation 129 

mechanism, these magmas gave rise to what we now know as the KREEP basalts, and the 130 

norites and troctolites of the magnesian (Mg) suite (recently reviewed by Shearer et al., 2015). 131 

Fractional crystallization of magmas resembling KREEP basalts is thought to have produced 132 

geochemically evolved rocks such as quartz monzodiorites (Ryder, 1976; Ryder and Martinez, 133 

1991, Jolliff 1991). Alternatively, silicate liquid immiscibility (SLI) is proposed to have played a 134 

role in the formation of the lunar felsites (e.g., Hess et al., 1975, Warner et al., 1978 Snyder et 135 

al., 1995; Ryder and Martinez, 1991, Shearer et al., 2015). Most importantly, any petrologic 136 

processing took place inside the Moon at pressures high enough to inhibit water loss from 137 

magmas or mantle rocks.   138 

 139 
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2. Samples.  140 

The felsites and quartz monzodiorites (QMDs) are both intrusive late-stage fractionates of 141 

KREEP-basaltic magmas (Ryder et al., 1975; Ryder and Martinez, 1991).  The felsite suite 142 

consists of evolved Si-rich (∼ 70 wt % SiO2) rocks with graphic intergrowths of quartz and K-143 

feldspar (Ryder et al., 1975; Warner et al., 1978; Taylor et al., 1980; Warren et al., 1983, 1987; 144 

Jolliff 1991; Robinson and Taylor, 2011).  Silica-rich compositions can be generated by partial 145 

melting, but extensive fractional crystallization also produces silica-rich melt through the 146 

process of silicate liquid immiscibility (SLI) (e.g. Rutherford et al., 1974).  After 90-98% 147 

crystallization of a basaltic magma, the remaining liquid will spontaneously separate into Si-rich 148 

and Fe-rich liquids (FeO 12-14 wt. %; Roedder and Weiblen 1971, Hess et al. 1975).  The Si-rich 149 

end member is called a felsite, while the Fe-rich end member is called a ferrobasalt (Rutherford 150 

et al., 1974).  Based on felsite texture and the presence of quartz, rather than another silica 151 

polymorph, the felsites and their corresponding Fe-rich phases formed in small intrusive bodies 152 

through silicate liquid immiscibility of an evolving magma of KREEP-basalt composition (e.g. 153 

Warner et al., 1978; Taylor et al., 1980; Warren et al., 1983; Robinson and Taylor 2011).    154 

Felsite sample 14321,1047 is well-known, consisting of clasts of graphically-intergrown 155 

quartz and K-feldspar, and resides in clast-rich impact breccia 14321 (Warren et al., 1983; Fig. 156 

1a).  Apatite was found enclosed by quartz in Si-rich 14321,1047, suggesting that it was a 157 

liquidus phase.  Sample 77538,16 is unique in that it preserves both silicate liquid immiscibility 158 

end-members in co-existing felsite and ferrobasalt areas (Warner et al. 1978)(Fig. 1b).  Apatite 159 

was found in both the Si-rich and Fe-rich end members; it is enclosed in clinopyroxene in the 160 

Fe-rich regions of 77538 and in K-feldspar in the Si-rich regions of 77538.   161 

The quartz monzodiorites (QMDs) are also evolved rocks.  They exhibit a cumulate texture 162 

and are probably fractional crystallization products of KREEP basaltic magmas (Ryder and 163 

Martinez, 1991; Jolliff 1991), though not quite as extreme fractionates as the felsites.  Many 164 

contain exsolved pyroxenes, indicating they formed in a slow-cooling, intrusive environment.  165 

Both 14161,7069 (Fig. 1d) and -,7373 were classified as QMDs (Jolliff 1991).  Section 166 

14161,7373 is particularly notable for its inverted, exsolved pyroxenes and high phosphate 167 
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content, mostly in the form of whitlockite (Jolliff 1991); strictly speaking, this anhydrous 168 

phosphate is more properly called merrillite (Hughes et al., 2006; Jolliff et al., 2006; Hughes et 169 

al., 2008; McCubbin et al., 2014).  Based on An contents of plagioclase some QMDs are 170 

probably more accurately described as monzogabbros, but we use monzodiorites here to 171 

maintain consistency with the majority of previously published literature on these samples.  172 

We studied three QMD clasts from soil sample 15400, (15404,51, 15404,55 and 15403,71) 173 

which was likely derived from the top of a large boulder (sampled as 15405) at Station 6A on 174 

the Apollo 15 mission.  Sample 15403,71 is a single fragment from the 2-4 mm fraction of 175 

15400.  It consists of roughly 50% impact melt and 50% shocked QMD. The QMD contains large 176 

phosphates, including a single > 500 µm apatite grain (Marvin et al., 1991).  Sample 15404,51 177 

and ,55 come from the 4-10 mm size fraction.  Apatite in QMD 15404,51 was studied previously 178 

by McCubbin et al. (2010).  Sample 15404,55 (Fig. 1c) is also a QMD, from the same chip and 179 

lithology as 15404,51.  In each of the three thin-sections studied, pyroxene shows fine 180 

exsolution lamellae, indicating an intrusive origin. Moreover, the samples’ enrichment in rare 181 

earth elements (Lindstrom et al., 1992), relative to Apollo 15 KREEP basalts, show they probably 182 

formed via fractional crystallization of an Apollo 15 KREEP-like magma, as shown by previous 183 

studies (e.g., Ryder and Martinez, 1991; Taylor et al., 2012). 184 

Alkali anorthosite clasts were studied in breccia 14305,656 (Fig.1f).  The alkali anorthosites 185 

are also products of fractional crystallization of a KREEP-rich basaltic magma, thought to have 186 

formed as flotation cumulates in intrusive magma bodies (Shervais and McGee, 1999).  187 

Merrillite was reported in other alkali anorthosite sections of 14305 (Shervais and McGee, 188 

1999), and our thin-section seems to be particularly rich in merrillite. Apatite is intergrown with 189 

merrillite in sample 14305,656. 190 

Troctolite 76535 is coarse-grained and shows signs of slow subsolidus annealing, leading to 191 

the interpretation that it could have formed at depths of tens of kilometers in the crust, 192 

significantly inhibiting water loss (Gooley et al., 1974; Dymek et al., 1975; Schwartz and 193 

McCallum, 1999). There are also reports that this rock may have been altered by post-194 

crystallization metasomatism, which likely would have altered the magmatic volatile contents 195 
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of apatite in this rock (Elardo et al., 2012; Barnes et al., 2014a).  We measured apatites in two 196 

thin-sections, 76535,52 and -,56 (Fig 1e).  The troctolite is not directly derived from KREEP 197 

basaltic magma like the felsites or QMDs, but it does have a high-KREEP content as revealed by 198 

trace element analyses of mineral grains (Shearer and Floss, 1999).  199 

We also examined two KREEP basalt fragments in impact melt breccia 15358,6. These 200 

KREEP basalts have intersertal to intergranular textures and abundant yellow glass that is 201 

interpreted to be the last 11-18 % of a KREEP basaltic melt, which quenched instead of 202 

crystallizing (Ryder 1988; Taylor et al. 2012).  No evidence for the clasts being impact melt 203 

breccias, such as unmelted mineral fragments, is present (Taylor et al., 2012).  Apatite large 204 

enough for SIMS analysis was not identified in either fragment; instead the D/H ratio and H 205 

concentration of the glass was measured. These unique clasts likely represent late-stage break 206 

outs from KREEP basalt lava flows (Taylor et al., 2012). 207 

3. Methods 208 

3.1. Secondary Ion Mass Spectrometry (SIMS).  Two instruments, the Cameca ims-1280 and 209 

the NanoSIMS 50L, have both been successfully used to measure H isotopes in extraterrestrial 210 

apatite (e.g. Hallis et al., 2012; Robinson et al., 2012; Barnes et al., 2013; Tartèse et al., 2013; 211 

2014).  The ims-1280 has higher analytical precision, but a large analysis size. The 50L 212 

NanoSIMS has a smaller analysis size, allowing the measurement of apatites that are too small 213 

or cracked to be analyzed with the ims-1280. This paper reports data from both instruments, 214 

and the respective protocols are described below. 215 

3.1.1. University of Hawaii (UH).  The protocol for measuring H isotopes in apatite at UH 216 

was developed for use with both Martian and lunar materials.  A detailed description of this 217 

protocol can be found in Hallis et al. (2012).  Lunar apatites were analyzed in-situ with the ims 218 

1280 secondary-ion mass spectrometer during four separate analytical sessions (May and 219 

November 2011, August 2012, and July 2014). We used a 2 nA Cs
+
 primary beam (4 nA in 220 

August 2012 and July 2014).  The secondary-ion mass spectrometer was operated at 10 keV  221 

(giving a 20 keV impact energy) with a 50 eV energy window. The mass resolving power was 222 
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∼1900  (defined as peak width at 10% of peak height), sufficient to separate any interfering 223 

molecular ions. A normal-incidence electron flood gun was used for charge compensation of 224 

the analyzed area.  225 

Using a rastered beam, a 25 × 25 µm
2
 area was sputtered for 300 s to remove the carbon 226 

coat and any surface contaminants before the actual measurement took place.  During the pre-227 

sputtering, we monitored the H ion image to identify and then avoid any possible terrestrial 228 

contamination.  In the H ion image, H-rich material such as epoxy or small cracks appears very 229 

bright. The beam was repositioned (when possible), in order to avoid H-rich areas.  The 230 

measurement was aborted if no “clean” area could be identified. 
1
H

−
, 

2
D

−
, and 

18
O

−
 were then 231 

measured sequentially on an electron multiplier in monocollection mode from a reduced 232 

rastered area of 15 x 15 µm
2
. For glass measurements, ions of 

30
Si

−
, instead of 

18
O

− 
were 233 

collected. An electronic gate was used to exclude counts from all but the inner ∼8 x 8 µm
2
 of 234 

this area to avoid the edges of the sputtered pit and H creep across the sample surface.  If 235 

contamination appeared (as a very bright signal on the H image and/or a sudden large spike in 236 

the H count rate) during the course of a measurement, the affected cycles were eliminated 237 

during data reduction. 238 

Each measurement consisted of 40 cycles. 
1
H was counted for 3 s, D for 40 s, and 

18
O (or 239 

30
Si for glasses) for 2 s in each cycle.  The primary beam was blanked for the first 10 and final 5 240 

cycles in order to measure background H and D signals (mainly contributed by the electron 241 

gun). The background counts were subtracted from the measured isotope signal, which was 242 

collected between cycles 11 and 35 while the beam was positioned on the sample. We made 243 

appropriate corrections in data analysis to account for the electronic gate and deadtime of the 244 

electron multiplier (c.f. Hallis et al., 2012). Hydrogen isotopes of KREEP basalt glasses were 245 

measured on the same instrument in March 2012 using the same analytical conditions.  246 

The SIMS measurements were calibrated prior to lunar apatite measurements using 3 247 

natural terrestrial apatite standards (Ap003 Durango, Ap018 Russia, and Ap005 Crystal Lode), 248 

mounted in epoxy, that were characterized previously by McCubbin et al. (2012). Ap018 and 249 

Ap005 were also used for instrumental mass fractionation corrections of measured D/H ratios. 250 
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The H2O content of lunar apatite was determined from their measured 
1
H/

18
O ratios and a 251 

calibration curve of H2O (wt.%) vs. 
1
H/

18
O determined using the 3 apatite standards with 252 

different H2O abundances (Fig. 2a). The curve was forced through the origin. 253 

For the KREEP glass measurements, we used two basaltic glass standards (D52-5 and D51-254 

3) with published D/H ratios (Hauri et al., 2002).  The H2O contents of these two standards were 255 

determined by Rhea Workman using FTIR at Caltech.  The H2O content of KREEP glass was 256 

calculated using a calibration curve (Fig. 2b) for H2O (wt.%) vs. 
1
H/

30
Si. That curve was also 257 

forced through the origin.  The reported errors on water contents and δD values include both 258 

the internal precision of an individual analysis and the external reproducibility (standard 259 

deviation) for standard measurements during a given analytical session. 260 

The detection limit for H2O content was estimated by measuring nominally anhydrous 261 

minerals, such as olivine and pyroxene present in the same thin-sections, and a San Carlos 262 

olivine standard in a separate, epoxy-free standard mount. Samples were stored in a 60 °C 263 

vacuum oven to minimize the adsorption of water on section surfaces.  As shown in Table 1, 264 

measurements with 2 nA primary beam resulted in a detection limit of ∼ 100 ppm.  The 265 

detection limit was later significantly improved by up to 10x by using a 4 nA primary beam.   At 266 

least two things conspire to produce this improvement. First, a higher beam current increases 267 

the signal from the species that make up the sample, while the H from the vacuum system and 268 

that creeping along the sample surface remains approximately constant.  Second, a higher 269 

beam current could more-efficiently remove surface H creeping in to the measurement area, 270 

thereby reducing the contaminant steady-state value.  Yurimoto et al. (1989) and Stéphant and 271 

Robert (2014) also reported that use of higher primary beam current efficiently improves the 272 

detection limit of hydrogen measurement. 273 

3.1.2 The Open University (OU).  The Cameca NanoSIMS 50L was used for determining the 274 

H2O contents and H isotopic composition of apatites following the protocol described in details 275 

in Barnes et al. (2013, 2014a) and Tartèse et al. (2013). Polished samples were gold-coated for 276 

NanoSIMS analysis. A Cs+ primary beam of ∼ 260 pA current was used and negative secondary 277 

ions of 
1
H, D, 

12
C, and 

18
O were collected simultaneously on electron multipliers. Electronic 278 
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gating was used to restrict counting secondary ions to the innermost 25 % of the sputtered 279 

area. Before analysis, pre-sputtering was performed over a 20 µm x 20 µm area using a ∼ 600 280 

pA primary beam for 1 minute to clean the sample surface and to locate the apatite using real 281 

time imaging (RTI), then further pre-sputtering was performed at a reduced area (analysis area) 282 

using the same beam conditions. An electron gun was used to provide charge compensation. 283 

Because of the variation in apatite grain size within and between samples, and the need to 284 

avoid cracks or inclusions, the analysis areas varied from 8 µm x 8 µm to 5 µm x 5 µm. The 285 

vacuum in the analysis chamber during analyses was ∼ 6.0 x 10
-10

 Torr.  286 

RTI was also carried out during the pre-sputtering to monitor 
1
H and 

12
C in order to identify 287 

cracks and hotspots. Occasionally, during an analysis a crack or hotspot appeared; in such a 288 

case, only the signal corresponding to analysis of the pristine sample was considered. This 289 

signal was isolated using the NanoSIMS DataEditor, software developed by Frank Gyngard 290 

(Washington University). Data inclusion was based on the 
12

C signal, which is very low in lunar 291 

apatites but is several orders of magnitude higher for material filling the cracks (c.f. Barnes et 292 

al., 2014a; Tartèse et al., 2014).  293 

Three terrestrial apatite standards (Ap003, Ap004, and Ap018 described in McCubbin et al., 294 

2012) pressed in indium were used for calibration along with a “dry” San Carlos olivine crystal. 295 

This dry olivine was used to monitor instrumental background, which ranged between 13 and 296 

24 ppm H2O for the different analytical sessions. To ensure that this measure is adequate for 297 

epoxy-mounted samples, analyses were also carried out under routine analytical conditions in 298 

two plagioclase crystals in sample 15404. Two analyses of plagioclase yielded between 19 and 299 

33 ppm H2O, which is considered background H2O assuming that the crystals are indeed dry. 300 

Overall, the calculated background H2O contents for indium-pressed dry olivine and epoxy-301 

mounted nominally anhydrous plagioclase were similar. Background H2O was then subtracted 302 

from the measured values of the unknown apatites.  303 

3.2. Galactic Cosmic Ray Exposure.   304 
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Exposure to cosmic rays on the surface of the Moon can produce D and H in situ, which can 305 

alter the indigenous D/H ratio of lunar materials.  Saal et al. (2013), Barnes et al. (2014a), and 306 

Robinson and Taylor (2014) demonstrated the importance of correcting for spallogenic D, 307 

especially in materials with low H2O content.  Spallation-produced D will have a proportionally 308 

larger effect on the D/H ratio in samples with low water content than in samples with high 309 

water content (Saal et al. 2013) and for samples with long cosmic ray exposure ages.  Since the 310 

apatites and glasses analyzed in this study have very low water contents (< 300 ppm H2O), this 311 

correction is important.   312 

The measured data were corrected following the procedure of Saal et al. (2013), by 313 

determining the amount of spallation-produced D using the D production rate (4.6 x 10
-11

 314 

mol/100 Myr, Merlivat et al., 1976) and the cosmic ray exposure (CRE) age of each sample, and 315 

then that contribution was subtracted from the measured D abundance for recalculating the 316 

D/H ratio.  The reported uncertainty includes the uncertainty in the D production rate and the 317 

2σ analytical uncertainties.  The large uncertainty in the D production rate dominates the error 318 

of the corrected δD values (∼ 50 %, Saal et al. 2013).  Unlike Saal et al. (2013), spallogenically 319 

produced H is not taken into account, because correcting for H has little effect on the overall 320 

D/H ratio.  For example, the typical spallation correction for H expressed as H2O is only ∼1 ppm 321 

(Saal et al., 2013).   322 

Cosmic ray exposure age data were available for samples 14321 (23.8 Ma, Lugmair and 323 

Marti, 1972; and 24 Ma, Burnett et al., 1972), 14161 (363 Ma, Kirsten et al., 1972), 76535 (195 324 

Ma, Bogard et al., 1975;  211 Ma, Crozaz et al., 1974; 233 Ma, Lugmair et al., 1976). When 325 

multiple ages were available, we averaged the ages.  Since the error associated with the 326 

correction for cosmogenic D is dominated by the large uncertainty on the D production rate, we 327 

did not factor errors on the cosmic ray exposure ages into the total uncertainty of the corrected 328 

values.  As the cosmic ray exposure (CRE) age of sample 15403/15404 has not been 329 

determined, the CRE age of 11 ± 1.1 Ma for sample 15405 was used.  Soil sample 15400 was 330 

collected from on top of 15405, and is classified as an immature soil.   331 
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 Two samples, 77538 and 15358, have no CRE ages available. Sample 77538 was 332 

collected at Station 7 as a rake sample with lunar soil that was designated mature (Meyer, 333 

2015). According to Morris (1978), it takes 100 Ma of exposure time to develop a mature soil.  334 

Therefore, we take 100 Ma as the exposure age of 77538 for the purposes of spallogenic D 335 

correction, but this is only meant to be a rough estimate.  Likewise, 15358 was collected as a 336 

rake sample from the rim of Spur Crater.  Another KREEP basalt from the same rake sample, 337 

15382, has been CRE dated to 230 Ma (Stettler et al., 1973) and 240 Ma (Turner et al., 1973).  338 

We use the average of these two dates as an estimate for the CRE age of 15358. 339 

 340 

4. Results 341 

Although we measure H, we report its concentration as H2O equivalent. In the lunar 342 

literature, “water” has been used to describe the presence of H, OH, or H2O collectively. As 343 

explained by Robinson and Taylor (2014), in magma “water” is present largely as OH until the 344 

total concentration reaches ∼3.5 wt.%, at which point H2O becomes the dominant molecular 345 

species (Dixon et al., 1995). No lunar magmatic water concentrations reach such high levels, 346 

implying that it is present dominantly as OH. However, under the reducing conditions (e.g., IW-347 

1) prevailing in lunar magmas, “water” probably consists of a combination of OH and H, with 348 

the proportion of H rising with increasing P and decreasing fO2 (Elkins-Tanton and Grove, 2011; 349 

Hirschman et al., 2012, Sharp et al., 2013). To avoid confusion because of the uncertainty in 350 

how much of each species is present, we report our results as H2O equivalent.  This approach is 351 

similar to reporting total Fe as FeO in electron microprobe analyses.  352 

We performed analyses with the UH ims-1280 on a total of 18 points among 11 apatite 353 

grains from eight thin sections of intrusive rocks to determine their D/H ratios and water 354 

contents.  We also made four measurements of residual glass in two KREEP basalt clasts in 355 

sample 15358,6 using the same instrument. Many apatite grains are too small (<30µm) or too 356 

cracked to be measured with the ims-1280, so they were analyzed with the NanoSIMS 50L ion 357 

microprobe at the Open University.  A total of 19 points among 13 apatite grains from three 358 

thin sections were measured using the NanoSIMS.  All of the δD values, water contents, and 359 
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their associated uncertainties are listed in Table 1.  Apatite data are plotted on Fig. 3 and 360 

compared with literature apatite data in Fig. 4.  Some of the data obtained with the ims-1280 361 

was first reported in Robinson et al. (2012, 2013) and Robinson and Taylor (2014).   362 

 The low H2O contents measured in KREEP-related materials (ranging from 23-267 ppm) is 363 

in stark contrast to apatite in most mare basalts, which contain ∼1000-7500 ppm H2O (Fig. 4). 364 

One apatite in felsite 14321,1047 and two apatites in QMD 14161,7373 had H2O content below 365 

our detection limits.  The KREEP basalt residual glass was similarly found to be water-poor, 366 

containing 58-95 ppm H2O with elevated δD value of +610 to +830 ‰ (Table 1). 367 

The range in δD values for apatite in intrusive samples measured here is astoundingly large, 368 

varying from ultralow (-749 ‰) to quite elevated (+973 ‰). There are substantial uncertainties 369 

on the NanoSIMS measurements (2σ from 317-650‰) due to poor counting statistics when 370 

using relatively low probe currents, which are a result of low water abundances in the apatite, 371 

but these data are consistent with more precise measurements of apatite in the same sample 372 

(14321,1047 apt1) made with the ims-1280.  Correction for spallogenic D decreases the δD 373 

value by up to 184‰, yet many lunar apatites with detectable water show δD values higher 374 

than in the Earth’s mantle, -218 to +60‰ (Boettcher et al., 1980; Michael 1998; Ahrens 1989; 375 

Deloule et al., 1991; Bell and Rossman 1992; Thompson 1992; Graham et al., 1994; Jambon 376 

1994; Wagner et al., 1996; Xia et al., 2002, Hallis et al., 2015).  The δD values of other apatites 377 

fall near or somewhat below the terrestrial range.   However, the δD of apatite in 15403,71 (as 378 

low as -749 ± 56‰ ) is by far the lightest δD value yet reported from the Moon, indicating that 379 

there could be a low D source in the lunar interior. 380 

5. Discussion.  381 

 The data reported here and those previously published suggest that hydrogen isotopic 382 

compositions and possibly water concentrations vary widely in the lunar interior. Here we 383 

evaluate the extent of these apparent heterogeneities and the important implications these can 384 

have with regards to lunar formation and differentiation, and the accretion of volatiles to the 385 

lunar interior. 386 
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5.1 Hydrogen isotopic composition: Multiple Reservoirs  387 

     Apatites in this sample suite vary widely in δD value (Table 1, Fig. 3, 4), ranging from -754 ± 388 

57 ‰ to +934 ± 514 ‰ (spallation corrected) . The δD values of apatites in individual samples 389 

(measured in this study and also in the literature) can also vary by 100s ‰ (Fig. 4).  To evaluate 390 

broad variations among δD values and H2O content of many samples, we made a histogram of 391 

the lowest D apatite analyses from each sample (Fig. 6).  If degassing affected the H isotopic 392 

composition of a given sample, the lowest δD value will represent the least degassed δD for 393 

that sample.   The data seem to cluster into groups with similar δD values.  These clusters could 394 

represent different reservoirs in the lunar interior, which we evaluate below (Fig. 6). 395 

5.1.1. Earth-like reservoir.   396 

The range in δD value of Earth’s present day upper mantle is estimated to be between - 397 

-218 and + 60 ‰ (Boettcher et al. 1980; Michael 1998; Ahrens 1989; Deloule et al. 1991; Bell 398 

and Rossman 1992; Thompson 1992; Graham et al. 1994; Jambon 1994; Wagner et al. 1996; Xia 399 

et al. 2002; Hallis et al., 2015), shown by a line on Fig. 6.  Several samples, including two KREEP 400 

basalts, five KREEP-rich intrusive rocks, and a mare basalt, fall in or near to this range in δD 401 

values.  As explained above, these KREEP-rich intrusive rocks formed at depth and pressure, so 402 

are less likely to have degassed and fractionated D from H prior to apatite crystallization.  The 403 

rocks could thus retain their original (or close to their original) D/H ratios, which are essentially 404 

Earth-like (Barnes et al., 2014a).  All of this evidence indicates that there is at least one 405 

reservoir in the lunar interior that has a δD value like the terrestrial mantle.  406 

   Despite the elevated δD values observed in mare basalt apatites, the mare basalt source may 407 

also be similar to the Earth-like δD reservoir.  Calculations by Tartèse and Anand (2013) and 408 

Tartèse et al. (2013) showed that the entire range of elevated δD values observed in mare 409 

basalt apatite could be produced by degassing of 85-99% of the hydrogen from a melt with 410 

CI/CM-like chondritic δD signature of ∼ +100 ‰, (Alexander et al. 2012).  While the water 411 

content of the mare basalts appears to be greater than the KREEPy intrusive rocks, they all 412 

could have had similar initial δD values, which are in or near the range of the terrestrial mantle. 413 
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Saal et al. (2013) and Füri et al. (2014) show that δD values of the pyroclastic glasses can be 414 

reconciled (after accounting for degassing) with being derived from a source region in the lunar 415 

interior with a δD value in the range of terrestrial rocks and carbonaceous chondrites. This is 416 

consistent with the isotopic compositions of olivine-hosted melt inclusions trapped within glass 417 

beads( Saal et al., 2013) 418 

5.1.2. Moderately elevated D reservoir.   419 

Another cluster of analyses on Fig. 6 appears between ∼150-350 ‰.  Three of these samples 420 

are alkali suite rocks, formed intrusively though extensive fractional crystallization of KREEP 421 

basaltic magmas (Snyder et al., 1995).  The alkali and Mg-suite rocks, however, formed 422 

intrusively and thus did not degas, or degassed little compared to eruptive samples.  They could 423 

represent a reservoir inside the Moon with an inherent moderately elevated δD signature.  It is 424 

also possible that these samples represent the high part of a range that begins with the 425 

terrestrial values, similar to those (δD +187 to +327 ‰) measured in melt inclusions by Saal et 426 

al., (2013), and so may not actually be resolvable from the Earth-like reservoir. 427 

5.1.3. Low D reservoir.   428 

A distinct reservoir, with very low δD signature, is represented by apatites from samples 429 

15404,51, and -,55, and 15403,71.  Apatite in these samples has an average δD value of - 630 430 

‰, which is far below the range of the terrestrial mantle and of other δD values for apatites 431 

reported from the Moon (Fig. 4). REE abundances in 15404,36 (the parent chip of 15404,51 and 432 

-,55) are elevated with respect to those of Apollo 15 KREEP basalt (Lindstrom et al., 1992), 433 

which is consistent with formation from a KREEP basaltic magma, and its texture (exsolved 434 

pyroxene) indicates that it formed intrusively, thus avoiding H fractionation due to degassing.  435 

Even if the source of these Apollo 15 QMDs had degassed, degassing elevates δD values, which 436 

means that their source would have had an even lower initial δD value.   437 

    Solar wind is also extremely depleted in D (< - 998‰; Huss et al., 2012) and the range in δD 438 

values of agglutinate glasses affected by solar wind from the regolith (Liu et al. 2012) is 439 

strikingly similar to the range seen in apatites from the Apollo 15 QMDs.  However, there is no 440 
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clear mechanism for introducing solar wind H into fragments of intrusive rocks residing inside 441 

an impact melt.  The Apollo 15 QMDs are considered to have formed at depth, in a shallow 442 

intrusion in the lunar crust (Ryder and Martinez, 1991), much deeper than D-depleted solar 443 

wind could have penetrated.  Rock 15405, on which the 15403/4 regolith developed, is an 444 

impact melt breccia deposited at the site ca. 1.3 Ga ago. This boulder was probably formed and 445 

thrown to the Apollo 15 site by the impact event that formed Aristillus crater (Ryder 1976; 446 

Ryder and Martinez, 1991; Ryder et al., 1991; Taylor et al., 2012).  It was subsequently buried 447 

and brought to the lunar surface at the Apollo 15 site only 11 Ma ago, based on its cosmic ray 448 

exposure age (Drozd et al., 1976). Direct implantation of solar wind H into these apatite grains 449 

is unlikely, as solar wind has been demonstrated to penetrate < 1 µm depth into the surface of 450 

a grain. Even if an apatite crystal was exposed directly on the surface the ambient lunar surface 451 

temperatures (∼100° C) are too low to allow significant diffusion of H into the crystal.  Using 452 

data from Cherniak (2010) and the interdiffusion coefficient for OH, F, and Cl, the total diffusion 453 

distance is only ∼10
-5

 microns at 100° C  in 11 Ma.  454 

    In order for apatite in the Apollo 15 QMDs to be contaminated with solar wind, H from solar 455 

wind would have had to have been incorporated into their source impact melt breccia and 456 

subsequently diffused into the apatite grains.  As discussed above, these samples were 457 

collected from on top of a three-meter boulder, sampled as 15405 (Meyer, 2015).   Drozd et al. 458 

(1976) measured Ne, Kr, and Xe isotopes in 15405 and Bernatowicz et al. (1978) measured Ar 459 

isotopes in 15405 (matrix and a QMD clast) as part of their Ar-Ar dating. Both papers state that 460 

the rock contains no measurable solar wind component. Nevertheless, it is worth investigating 461 

whether enough regolith could be incorporated into the 15405 impact melt to impart a low δD 462 

signature on the clasts in the rock. 463 

Is it possible that the 15405 impact melt was contaminated with solar wind during its formation 464 

by the Aristillus impact? The pre-Aristillus regolith could have been a few meters thick, having 465 

formed between 3.8 Ga (the age of Imbrium) and 1.27 Ga (the age of Aristillus). We use 10 m 466 

for these calculations.  How much of that 10 m layer would then be incorporated into the melt 467 

formed during the impact that produced Aristillus crater? Using equations 7.10.2 in Melosh 468 
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(1989) for a 55 km crater and assuming an impact velocity of 17 km/sec, a vertical impact angle, 469 

impactor density of 3000 kg/m
3
, and target density of 2500 kg/m

3
, we estimate that the 470 

projectile would have a radius of 1 km.  The fraction of the impact melt derived from regolith is 471 

the regolith volume intersected by the footprint of the impacting projectile (1 km). Therefore, 472 

the regolith constitutes a disk 10 meters thick and 1 km in radius, equivalent to a volume of 473 

0.031 km
3
. Dividing this by the total volume of the melt produced, 500 km

3 
(using projectile size 474 

and velocity noted above, after Grieve and Cintala 1992), gives a regolith fraction of 0.0063%. If 475 

the regolith contained 100 ppm H (close to the upper limit measured on Apollo regolith 476 

samples, Haskin and Warren, 1991), then the impact melt (assuming uniform mixing) would 477 

acquire 0.0063 ppm H. If all of the solar wind H was incorporated into apatite and the apatite 478 

abundance was 1% (the amount of normative apatite in KREEP basalt), then the apatite would 479 

contain a maximum of 0.6 ppm of solar wind derived H from the regolith atop the Aristillus 480 

target.  This is equivalent to 5.4 ppm H2O, which is only ∼4% of the average water content of 481 

apatite in 15403, 71.  Moreover, any solar wind H incorporated from the regolith would have 482 

then had to diffuse through the very rapidly cooling impact melt (Onorato et al., 1976) and rock 483 

fragments to eventually reach the apatite. We conclude that the low δD signature is not derived 484 

from solar wind contamination, but instead reflects the nature of the KREEP-rich rocks in the 485 

Aristillus target materials. This is supported by δD data from relict apatite grains in the impact 486 

melt of 15405 (Barnes et al., 2014b) that have preserved low δD values similar to those 487 

measured in 15403 and 15404 in this study.   488 

    The presence of a very low D reservoir in the lunar interior has interesting implications for 489 

potentially degassed samples with low δD values (≈ -100 ‰), such as the two basalts (NWA 773 490 

and 14053) that have δD signatures in the terrestrial range. Both of these samples have had 491 

their low δD values explained by lack of degassing (NWA 773, average δD ≈ -29 ‰, Tartèse et 492 

al., 2014) or incorporation of low D solar wind during impact heating (14053, average δD ≈ -190 493 

‰, Greenwood et al., 2011).  However, if a very low D reservoir existed in the Moon perhaps 494 

these samples owe their low δD signatures to a mantle source that was depleted in D.  We 495 

calculate that if they had started with δD value of – 500 ‰, similar to the average δD value of 496 

15404,55, the average δD values of apatite in both 14053 and NWA 773 could be obtained with 497 
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> 85 % H2 loss.  This did not necessarily occur for these samples, but it is an intriguing 498 

possibility. 499 

5.2 Heterogeneous water distribution in the lunar interior? 500 

The low H2O content (< 500 ppm) measured in the majority of KREEP-related materials 501 

is in stark contrast to the higher H2O contents (∼1000-7500 ppm) of apatites in most mare 502 

basalts (Figs. 3, 4). Important exceptions are norites 77215 and 78235, and a granite clast in 503 

14303 (Barnes et al., 2014a). Despite attempts to calculate magmatic water contents from 504 

apatite data (McCubbin et al., 2010, Boyce et al., 2010, Barnes et al., 2013, Tartèse et al. 2013, 505 

2014, Robinson et al., 2013), Boyce et al. (2014) have shown that partitioning of OH, F, and Cl 506 

into apatite is complicated and depends on the relative and total abundances of these species, 507 

the timing of apatite crystallization, and the extent to which equilibrium was maintained during 508 

apatite crystallization of the melt.  Estimating water content is further complicated by 509 

formation of late-stage melt pockets during crystallization in a lava flow (Pernet-Fisher et al., 510 

2014). 511 

  While estimating the water content of a magma from apatite H2O might not be possible, 512 

the H2O concentration of residual glass in KREEP basalts in rock 15358 can be used to estimate 513 

the initial concentration in the magma before crystallization and loss occurred. The glass 514 

contains between 58 and 95 ppm H2O (Table 1) and represents the last ∼20 % of melt 515 

remaining, as determined by modal analyses (Taylor et al., 2012). Because water is 516 

incompatible in all lunar minerals except apatite, its initial concentration in the magma would 517 

have increased as plagioclase and pyroxene crystallized. Thus, if no loss of H2O occurred, the 518 

parent magma would have contained 20% of the amount we measured in the glass, 12–19 ppm 519 

H2O. The relatively high δD value (average of +560 ‰, corrected for spallation) of the glass 520 

suggests that the magma might have lost water, as expected for a lava flow. To assess the initial 521 

water content, we calculated the amount of water loss by assuming that the initial δD value 522 

was -100 (earthlike) that loss was dominated by H2, and that the final δD is what we observe in 523 

the KREEP basalt clasts (+560 ‰), following the method used by Tartèse et al. (2013). The 524 

results are shown in Fig. 5. An initial δD value of -100 ‰ requires an initial H2O concentration of 525 
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115 ppm to produce the mean δD value of +560 ‰ and 85% loss of initial H. A lower initial δD 526 

value would require a higher initial water content, but also a greater loss of H. Initial δD 527 

equivalent to VSMOW implies an initial H2O content of 80 ppm, requiring 80 % loss of the initial 528 

water to obtain a δD of 560 ‰.  An initial δD signature of -500 ‰ (at the top of the range for 529 

the Apollo 15 QMDs), requires > 99.9 % water loss, which is unreasonable considering that the 530 

pyroclastic glasses lost only about 98% (Saal et al., 2008).  531 

 These estimates lead us to conclude that the lava in which the KREEP basalt clasts in 532 

15358 formed could have had an Earth-like initial δD signature (∼0 ‰) and ∼100 ppm H2O. For 533 

comparison, melt inclusions in olivine in Apollo 17 orange glass beads (Hauri et al., 2011; Saal et 534 

al., 2013) contain 270–1200 ppm. Assuming that lower values reflect H loss from the inclusions, 535 

we infer that the orange glass magma contained ∼1000 ppm H2O, about an order of magnitude 536 

larger than we estimate for the KREEP basalts in 15358. Saal et al. (2008) calculated from 537 

diffusion profiles of H, Cl, F, and S that the pre-eruption magma for the VLT glass contained 538 

260–745 ppm H2O, consistent with melt inclusion measurements in the orange glass. Assuming 539 

10% partial melting, the mantle sources for the orange glass, green glass, and KREEP basalt 540 

magmas would have contained 100 ppm, 75 ppm, and 10 ppm H2O, respectively, suggesting a 541 

range in mantle H2O contents. Clearly, more work on KREEP basalts and KREEP-rich glasses is 542 

needed in order to fully understand the relationship between glass/melt inclusion H2O content 543 

and source region water content.  544 

   545 

5.3 Implications for the lunar interior.  546 

       The primary goal of all measurements of water in volcanic glasses, melt inclusions, and 547 

apatites is to determine the bulk water content and sources of water in the Moon. The 548 

observed heterogeneities in water abundance and δD values in the lunar interior present a 549 

major problem, as it is unclear which samples, if any, are the most representative of the Moon 550 

as a whole. The most reliable H2O abundance measurements for determining pre-eruptive 551 

water content of lunar magmas come from the melt inclusions in olivine in pyroclastic glass 552 
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beads, which indicates that at least one part of the lunar interior contains as much water as the 553 

source regions of MORBs (Hauri et al., 2011).  These melt inclusions did not lose much water 554 

when they formed, which means their δD values are minimally fractionated (Saal et al., 2013).  555 

After correction for spallation, the δD values of the A17 melt inclusions range from +187 to 556 

+327 ‰ (Saal et al., 2013). To the extent that H loss did happen, the original δD would have 557 

been lower. This is near the Earth range, but it is also near the range of the moderately-558 

enriched δD value reservoir discussed above, which primarily consists of KREEP-rich, intrusive 559 

rocks.  This may also indicate that the moderately enriched reservoir could be related to the 560 

Earthlike reservoir. 561 

    Füri et al., (2014) reported data suggesting that the source of the Apollo 17 orange glass 562 

(74002) had an initial δD value of – 100 ‰, which is within the range of the terrestrial mantle. 563 

Does this suggest a common source of water in the terrestrial mantle and some portions of the 564 

lunar interior? Füri et al., (2014) point out that a δD value of -100 ‰ is within the range of 565 

carbonaceous chondrites, and could indicate the delivery of at least some water to the Earth-566 

Moon system by late accretion (e.g., Saal et al., 2013; Tartèse and Anand 2013; Tartèse et al., 567 

2013; Tartèse et al., 2014). However, if this water was not added after lunar formation to the 568 

Earth-Moon system, then it could be conceived that water was retained during the Giant 569 

Impact event allowing for some regions to contain substantial water, with Earth-like δD 570 

signature (Saal et al., 2013; Barnes et al., 2014a; Füri et al., 2014). 571 

     Greenwood et al. (2011) were the first to measure δD signatures of apatite in lunar samples, 572 

and they showed that apatite in mare basalts were characterized by elevated δD values (> 800 573 

‰). They suggested that the Moon accreted dry (constrained by Moon-formation-evolution 574 

models available at the time), and water was added later from a source, such as comets, 575 

already characterized by water with high δD values. This seems unlikely.  The mare basalts 576 

almost certainly lost water when erupted, so their δD values are elevated by the process of 577 

magmatic degassing of H2 which preferentially fractionates H over D isotopes (as discussed in 578 

the previous sections). Tartèse and Anand (2013) calculated that pre-eruptive mare basalt 579 

magmas could have been characterized by δD values of ∼ 100 ‰, but lost 85-99 % of their 580 
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water, which consequently elevated the δD value of the water. Thus, there is no compelling 581 

need for a source with high δD values in the lunar interior. It is possible that late-delivered 582 

volatiles could have been added after the mantle cumulates were formed but prior to the 583 

formation of a significantly thick crust (e.g., Hauri et al., 2015). 584 

The apparently dry regions of the lunar interior vary in δD values from moderately 585 

enriched to extremely depleted. The regions that are moderately enriched compared to Earth 586 

may reflect fractionation in the proto-lunar disk after the Moon-forming impact (Desch and 587 

Taylor, 2012; Hauri et al., 2015). Fractionation of D from H (preferential loss of lighter H) is 588 

consistent with the presence of heavy Zn isotopic signatures in lunar samples (Paniello et al., 589 

2012).  H loss from the disk needs to be modelled thoroughly, but if H loss was high (∼ 90 %) 590 

during lunar formation, D/H fractionation could have been sufficient to change the δD value 591 

from – 218 ‰ (the lower range of terrestrial mantle values) to the range shown by the 592 

moderately enriched lunar reservoir (+200 to +400 ‰). Alternatively, the potentially dry 593 

regions of the lunar interior with δD values in the terrestrial range might reflect Moon-forming 594 

materials that lost water, but did not fractionate D from H. The regions with Earth-like δD 595 

signatures could also have formed by extensive fractionation of H from D during lunar 596 

formation, but began with a low δD values like those observed in Apollo 15 QMD apatites. This 597 

implies that the primitive Earth could have had a much lower δD signature than is currently 598 

considered for the present-day upper mantle. In fact, primitive mantle sources have been 599 

identified and at least some contain low δD values, as low as – 218 ± 34 ‰ (Hallis et al., 2015).  600 

Halliday (2013) explains the Earth’s low δD as a mixture of chondritic and solar components.  601 

Our study has contributed to the growing dataset for water and H-isotopes from lunar 602 

apatites, and has targeted mostly intrusive rocks of the lunar highlands (felsites and QMDs). 603 

The data presented are in agreement with previous work advocating for the heterogeneous 604 

distribution of water in the lunar interior (e.g., Anand, 2010; McCubbin et al., 2011; Robinson 605 

and Taylor, 2014). The apatites in Apollo 15 QMDs record a water reservoir in the lunar interior 606 

that is characterized by an anomalously low D/H ratio (∼ -600 ‰), the lowest yet recorded for 607 

the lunar interior. This is distinct from the majority of lunar samples, which range in δD values 608 
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of -200 to +100 ‰ compatible with results from lunar highlands cumulates, mare and KREEP 609 

basalts, and picritic glasses (Saal et al., 2013; Füri et al., 2014; Barnes et al., 2014a; Tartèse et 610 

al., 2014), though some samples have δD values as high as +600 to +700  ‰. The origin or 611 

source of this uniquely D-depleted reservoir is ambiguous but could be an isotopic signature 612 

resulting from Moon formation through fractionation of H isotopes in the protolunar disk, the 613 

incorporation of a primitive Solar component to the lunar interior, or a signature inherited from 614 

a depleted reservoir in the proto-Earth.   615 

Summary and Conclusions. 616 

The measurements of KREEP-rich intrusive samples presented here, along with 617 

literature data, show that apatite in the KREEP-rich intrusive rocks is low in H2O.  Though 618 

apatite cannot be used to calculate pre-eruptive magmatic water content, our measurements 619 

of residual glass in KREEP basalt fragments in 15358 suggest that the KREEP-basaltic parent 620 

magmas to the felsites and QMDs was very dry, with the mantle source of 15358 containing 621 

∼10 ppm H2O, about ten times less than the mantle source of the A17 pyroclastic glasses.  This 622 

suggests at least two different reservoirs for water in the lunar mantle; one “wet” and one 623 

“dry”, which complicates determining the bulk water content of the Moon. 624 

 In addition to the water content of apatite in these KREEP-rich intrusive rocks, we have 625 

also measured their H isotope compositions and compared them with literature data.  Lunar 626 

apatites show an astonishingly large range in δD and may fall into a number of reservoirs.  627 

Many lunar rocks, including the mare basalts, seem to have had initial δD similar to that of 628 

Earth’s mantle, while the drier KREEP-rich rocks studied here are moderately elevated in D with 629 

respect to Earth.  The most surprising results came from apatite in Apollo 15 QMDs 15404, 51, 630 

15404,55, and 15403, 71, which have the lowest δD measured in lunar apatite so far, as low as -631 

754 ‰.  These QMDs may represent another reservoir in the lunar mantle that could preserve a 632 

primitive, D-depleted component within the Moon, perhaps inherited from the proto-Earth.   633 

Our data indicate that water is heterogeneously distributed in the Moon, varying in both 634 

concentration and hydrogen isotopic composition. How these distinctive reservoirs formed is 635 
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unclear, but likely reflect a combination of lunar formation and differentiation. Bulk lunar water 636 

concentration is difficult to constrain, but the variability in water content and D/H may be much 637 

more informative about lunar origin than is the total amount of water in the Moon.  638 
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Table 967 

Sample   
ppm 

H2O 

ppm 

H2O 

2σ2σ2σ2σ 

 δ δ δ δD ‰    δδδδD 2σσσσ    
Corrected 

δδδδD ‰ 
δδδδD 2σσσσ    

detect. 

limit (ppm 

H2O) 

Instrument 

14305, 656 apt1 23 1 799 650 735 652 13 NanoSIMS 

  apt3 #2 136 4 491 320 481 320 13 NanoSIMS 

  apt3 #3 41 1 -28 528 -65 528 13 NanoSIMS 

  apt3 #4 37 1 973 513 934 514 13 NanoSIMS 

  apt4  49 2 -76 458 -107 459 13 NanoSIMS 

  apt5 54 2 -6 481 -34 481 13 NanoSIMS 

  apt6  36 1 649 417 608 418 13 NanoSIMS 

  apt7 53 2 -139 420 -168 420 13 NanoSIMS 

14321, 1047 apt1 #1 <100   n.d.   n.d.   100 ims-1280 

  apt1 #2 <100   n.d.   n.d.   100 ims-1280 

  apt1 #3 82 2 247 415 231 415 24 NanoSIMS 

  apt2 #1 <24   n.d.   n.d.   24 NanoSIMS 

  apt2 #2 137 3 -108 364 -118 364 24 NanoSIMS 

  apt4  93 2 -313 439 -327 439 24 NanoSIMS 

  apt5 <24   n.d.   n.d.   24 NanoSIMS 

  apt6 #1 66 2 943 356 925 356 24 NanoSIMS 

  apt6 #2 76 2 806 317 790 317 24 NanoSIMS 

14161, 7069  triapt #1 162 49 231 55 114 66 110 ims-1280 

  triapt #2 189 57 265 56 165 62 110 ims-1280 

14161, 7373  apt3 174 52 432 56 323 70 110 ims-1280 

  apt2 <110   n.d.   n.d.   110 ims-1280 

  apt1 <110   n.d.   n.d.   110 ims-1280 

15403,71 apt1 #1 77 9 -589 78 -597 79 6 ims-1280 

  apt1 #2 181 20 -721 48 -724 48 6 ims-1280 

  apt1 #3 129 14 -749 56 -754 57 6 ims-1280 

15404,51  apt6 #1 58 6 -428 135 -438 138 6 ims-1280 

  apt6 #2 46 6 -640 80 -653 82 6 ims-1280 

15404, 55 apt1 #1 134 4 -587 432 -592 432 13 NanoSIMS 

  apt 1#2 267 9 -344 319 -346 319 13 NanoSIMS 

  apt2 #1 76 2 -344 492 -352 492 13 NanoSIMS 

  apt2 #2 99 3 -683 491 -689 491 13 NanoSIMS 

  apt2 #3 99 3 -541 491 -547 491 13 NanoSIMS 

  apt2 #4 69 2 -505 523 -514 523 13 NanoSIMS 

15358,6  gls c4 #1 95 11 698 71 566* 88 10 ims-1280 

  gls c4 #2 95 11 610 71 477* 86 10 ims-1280 

  gls c1 #1 58 7 789 84 572* 124 10 ims-1280 

  gls c1 #2 64 8 830 83 634* 117 10 ims-1280 

76535, 52  apt1 75 7 791 66 639 93 22 ims-1280 

76535,56  bigapt #1 62 6 572 79 388 106 22 ims-1280 

  bigapt#2 86 8 475 110 342 103 22 ims-1280 

  bigapt #3 <22   n.d.   n.d.   22 ims-1280 

77538,16 apt1 175 55 335 74 304* 74 100 ims-1280 

  apt2 188 55 411 74 383* 74 100 ims-1280 
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Table 1. Measured H2O abundances and δD values of lunar apatites and glasses*.  Multiple 968 
measurements on the same grain are indicated by a #. Italic font denotes measurements below 969 

our detection limit.  n.d. - not detected. Analytical errors are 2σ. Corrected δD values are those 970 
after correcting for the contribution of spallation-produced D, and uncertainty on the corrected 971 

δD values is dominated by large uncertainty in the D production rate.   972 
     *Exposure ages have not been determined for these samples.  The CRE age estimates used 973 
here are described in section 3.2. 974 
 975 

976 
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Figure Captions 977 

Fig. 1.  Representative backscattered electron (BSE) images of samples described in this work. 978 

Where visible, apatites are denoted by arrows. (a) Graphic intergrowth of quartz (dark gray) 979 

and K-feldspar (light gray) in 14321, 1047. (b) Felsite-ferrobasalt silicate liquid immiscibility pair 980 

in 77538, 16.  The darker intergrowth is quartz and K-feldspar, while the bright areas are Fe-rich 981 

olivine, pyroxene, and amorphous silica.  Fe-Ni metal and ilmenite are also present.  (c) Portion 982 

of quartz monzogabbro 15404, 55. (d) Portion of quartz monzodiorite 14161, 7373.  The 983 

exsolved phase is inverted pigeonite, while the brightest phase is merrilite (Jolliff et al. 1999).  984 

The bleb near the center of the image is intergrown silica and K-feldspar formed through 985 

immiscibility.  Bright squares are ion microprobe analysis pits. (e) Apatite-merrilite intergrowth 986 

surrounded by plagioclase in troctolite 76535 56.  The darkest phase is olivine.  Round dark 987 

marks in the apatite are pits from previous analyses.  Note the large grain size.  (f) Apatite-988 

merrillite intergrowth in an alkali anorthosite clast in breccia 14305, 656.  The bright gray is 989 

merrillite, the darker intergrowths are apatite (indicated by arrow).  Darkest gray is plagioclase. 990 

 991 

Fig. 2. Sample calibration curves for ims-1280 analysis. (a) 
1
H/

18
O calibration curve for H2O in 992 

apatite and (b) 
1
H/

30
Si calibration curve for H2O in basaltic glass.  Similar calibration curves were 993 

used to calibrate NanoSIMS data. 994 

 995 

Fig. 3.  Apatite data for KREEP-rich intrusive samples, with 2σ error bars.  The spallation 996 

correction can lower the δD of apatite by > 100 ‰ in samples with long cosmic ray exposure 997 

ages. 998 

 999 

Fig. 4. Plot showing δD value versus ppm H2O content of apatite in this study (colored points) 1000 

compared with literature apatite data (grayscale points, Greenwood et al. 2011; Tartèse et al. 1001 

2013, 2014, Barnes et al. 2013, 2014a).  Note the log scale on the x-axis. 1002 

1003 
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 1004 

Fig. 5(a)(b) BSE images of KREEP basalt fragments containing quenched residual glass in 1005 

15358,6. Dark, straight-sided phase is plagioclase, medium gray is pyroxene, and the bright 1006 

areas are Fe-rich yellow glass. Silica (darkest gray) and ilmenite (white needles) are also 1007 

present.  White squares indicate ion microprobe analysis pits. (c) Calculation of the increase in 1008 

δD value due to hydrogen loss, constrained by the δD value measured in 15358 KREEP basalt 1009 

glass (corrected for crystallization). To reach the observed δD in 15358 requires loss of 85% of 1010 

an initial H2O concentration of 115 ppm.  1011 

 1012 

Fig. 6.  Histogram of the lowest apatite δD measurement in lunar samples by rock type, 1013 

including literature data from Greenwood et al. (2011); Tartèse et al. (2013, 2014), and Barnes 1014 

et al. (2013, 2014a).  The lowest δD apatite should represent the δD value least affected by 1015 

degassing, if degassing occurred. The range in δD value of Earth’s mantle and CI and CM 1016 

chondrites is also shown (Boettcher et al., 1980; Michael 1998; Ahrens 1989; Deloule et al., 1017 

1991; Bell and Rossman 1992; Thompson 1992; Graham et al., 1994; Jambon 1994; Wagner et 1018 

al., 1996; Xia et al., 2002; Alexander et al., 2012; Hallis et al., 2015).  The protosolar δD value of 1019 

~ -865 ± 32 ‰ is from Geiss and Gloecker (1998).  There appear to be at least three H reservoirs 1020 

in the lunar interior: an Earth-like reservoir, a moderately elevated reservoir, and a very low D 1021 

reservoir.  The mare basalts would have had an initial undegassed δD signature compatible with 1022 

the Earth range, ∼100‰ (Tartèse and Anand 2013).   1023 

 1024 
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