48 research outputs found

    OBSERVATORIO TERRITORIAL Y AMBIENTAL ALENTEJO, EXTREMADURA, CENTRO (OTALEX C): DE GIS A IDE.

    Get PDF
    In the scope of the Spain-Portugal INTERREG projects and FEDER funded POCTEP program, OTALEX C (Territorial and Environmental Monitoring Alentejo Extremadura Center) project aims at studying of various territorial, socioeconomic and environmental indicators. It is the fundamental objective of this project, to develop a geo-portal accessible via internet, for anyone, so that the information will be useful in making decisions related to land use and therefore sustainable development of the environment. Under this general framework over the past fifteen years, we have developed different projects that have set the standardization of data between Portugal and Spain, also was designed GIS systems, and developed regional models and indicator systems, culminating in the current Spatial Data Infrastructure SDI-OTALEX C

    Longitudinal association of dietary acid load with kidney function decline in an older adult population with metabolic syndrome

    Full text link
    Background: Diets high in acid load may contribute to kidney function impairment. This study aimed to investigate the association between dietary acid load and 1-year changes in glomerular filtration rate (eGFR) and urine albumin/creatinine ratio (UACR). Methods: Older adults with overweight/obesity and metabolic syndrome (mean age 65 ± 5 years, 48% women) from the PREDIMED-Plus study who had available data on eGFR (n = 5,874) or UACR (n = 3,639) at baseline and after 1 year of follow-up were included in this prospective analysis. Dietary acid load was estimated as potential renal acid load (PRAL) and net endogenous acid production (NEAP) at baseline from a food frequency questionnaire. Linear and logistic regression models were fitted to evaluate the associations between baseline tertiles of dietary acid load and kidney function outcomes. One year-changes in eGFR and UACR were set as the primary outcomes. We secondarily assessed ≥ 10% eGFR decline or ≥10% UACR increase. Results: After multiple adjustments, individuals in the highest tertile of PRAL or NEAP showed higher one-year changes in eGFR (PRAL, β: -0.64 ml/min/1.73 m2; 95% CI: -1.21 to -0.08 and NEAP, β: -0.56 ml/min/1.73 m2; 95% CI: -1.13 to 0.01) compared to those in the lowest category. No associations with changes in UACR were found. Participants with higher levels of PRAL and NEAP had significantly higher odds of developing ≥10% eGFR decline (PRAL, OR: 1.28; 95% CI: 1.07-1.54 and NEAP, OR: 1.24; 95% CI: 1.03-1.50) and ≥10 % UACR increase (PRAL, OR: 1.23; 95% CI: 1.04-1.46) compared to individuals with lower dietary acid load. Conclusions: Higher PRAL and NEAP were associated with worse kidney function after 1 year of follow-up as measured by eGFR and UACR markers in an older Spanish population with overweight/obesity and metabolic syndrome. Keywords: albuminuria; chronic kidney disease (CKD); dietary acid load; glomerular filtration rate (GFR); kidney function; net endogenous acid production (NEAP); potential renal acid load (PRAL); renal nutrition

    Longitudinal association of dietary acid load with kidney function decline in an older adult population with metabolic syndrome

    Get PDF
    Background: Diets high in acid load may contribute to kidney function impairment. This study aimed to investigate the association between dietary acid load and 1-year changes in glomerular filtration rate (eGFR) and urine albumin/creatinine ratio (UACR). Methods: Older adults with overweight/obesity and metabolic syndrome (mean age 65 ± 5 years, 48% women) from the PREDIMED-Plus study who had available data on eGFR (n = 5,874) or UACR (n = 3,639) at baseline and after 1 year of follow-up were included in this prospective analysis. Dietary acid load was estimated as potential renal acid load (PRAL) and net endogenous acid production (NEAP) at baseline from a food frequency questionnaire. Linear and logistic regression models were fitted to evaluate the associations between baseline tertiles of dietary acid load and kidney function outcomes. One year-changes in eGFR and UACR were set as the primary outcomes. We secondarily assessed ≥ 10% eGFR decline or ≥10% UACR increase. Results: After multiple adjustments, individuals in the highest tertile of PRAL or NEAP showed higher one-year changes in eGFR (PRAL, β: –0.64 ml/min/1.73 m2; 95% CI: –1.21 to –0.08 and NEAP, β: –0.56 ml/min/1.73 m2; 95% CI: –1.13 to 0.01) compared to those in the lowest category. No associations with changes in UACR were found. Participants with higher levels of PRAL and NEAP had significantly higher odds of developing ≥10% eGFR decline (PRAL, OR: 1.28; 95% CI: 1.07–1.54 and NEAP, OR: 1.24; 95% CI: 1.03–1.50) and ≥10 % UACR increase (PRAL, OR: 1.23; 95% CI: 1.04–1.46) compared to individuals with lower dietary acid load. Conclusions: Higher PRAL and NEAP were associated with worse kidney function after 1 year of follow-up as measured by eGFR and UACR markers in an older Spanish population with overweight/obesity and metabolic syndrome

    Impact of COVID-19 pandemic on the PREDIMED-Plus randomized clinical trial: Effects on the interventions, participants follow-up, and adiposity

    Full text link
    Background: The COVID-19 pandemic has affected the implementation of most ongoing clinical trials worldwide including the PREDIMED-Plus study. The PREDIMED-Plus is an ongoing, multicenter, controlled intervention trial, aimed at weight-loss and cardiovascular disease prevention, in which participants were randomized (1:1 ratio) to an intervention group (energy-reduced Mediterranean diet, promotion of physical activity, and behavioral support) or to a control group (Mediterranean diet with usual care advice). When the pandemic began, the trial was in the midst of the planned intervention. The objective of this report was to examine the effects of the pandemic on the delivery of the intervention and to describe the strategies established to mitigate the possible adverse effects of the pandemic lockdown on data collection and adiposity. Methods: We assessed the integrity of the PREDIMED-Plus trial during 5 identified periods of the COVID-19 pandemic determined according to restrictions dictated by the Spanish government authorities. A standardized questionnaire was delivered to each of the 23 PREDIMED-Plus recruiting centers to collected data regarding the trial integrity. The effect of the restrictions on intervention components (diet, physical activity) was evaluated with data obtained in the three identified lockdown phases: pre lockdown, lockdown proper, and post lockdown. Results: During the lockdown (March/2020-June/2021), 4,612 participants (48% women, mean age 65y) attended pre-specified yearly follow-up visits to receive lifestyle recommendations and obtain adiposity measures. The overall mean (SD) of the proportions reported by each center showed that 40.4% (25.4) participants had in-person visits, 39.8% (18.2) participants were contacted by telephone and 35% (26.3) by electronic means. Participants' follow-up and data collection rates increased across lockdown periods (from ≈10% at onset to ≈80% at the end). Compared to pre-lockdown, waist circumference increased during (0.75 cm [95% CI: 0.60-0.91]) and after (0.72 cm [95% CI: 0.56-0.89]) lockdown. Body weight did not change during lockdown (0.01 kg [95% CI: -0.10 to 0.13) and decreased after lockdown (-0.17 kg [95% CI: -0.30 to -0.04]). Conclusion: Mitigating strategies to enforce the intervention and patient's follow-up during lockdown have been successful in preserving the integrity of the trial and ensuring its continuation, with minor effects on adiposity. Clinical trial registration: https://doi.org/10.1186/ISRCTN89898870, identifier ISRCTN89898870. Keywords: COVID-19; Mediterraean diet; PREDIMED-Plus; clinical trial; lockdown; weight-loss. Copyright © 2023 Paz-Graniel, Fitó, Ros, Buil-Cosiales, Corella, Babio, Martínez, Alonso-Gómez, Wärnberg, Vioque, Romaguera, López-Miranda, Estruch, Tinahones, Lapetra, Serra-Majem, Bueno-Cavanillas, Tur, Martín-Sánchez, Pintó, Gaforio, Matía-Martín, Vidal, Vázquez, Daimiel, García-Gavilán, Toledo, Nishi, Sorlí, Castañer, García-Ríos, García de la Hera, Barón-López, Ruiz-Canela, Morey, Casas, Garrido-Garrido, Tojal-Sierra, Fernández-García, Vázquez-Ruiz, Fernández-Carrión, Goday, Peña-Orihuela, Compañ-Gabucio, Schröder, Martínez-Gonzalez and Salas-Salvadó. Conflict of interest statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

    Stratification of radiosensitive brain metastases based on an actionable S100A9/RAGE resistance mechanism

    Get PDF
    © The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Whole-brain radiotherapy (WBRT) is the treatment backbone for many patients with brain metastasis; however, its efficacy in preventing disease progression and the associated toxicity have questioned the clinical impact of this approach and emphasized the need for alternative treatments. Given the limited therapeutic options available for these patients and the poor understanding of the molecular mechanisms underlying the resistance of metastatic lesions to WBRT, we sought to uncover actionable targets and biomarkers that could help to refine patient selection. Through an unbiased analysis of experimental in vivo models of brain metastasis resistant to WBRT, we identified activation of the S100A9-RAGE-NF-κB-JunB pathway in brain metastases as a potential mediator of resistance in this organ. Targeting this pathway genetically or pharmacologically was sufficient to revert the WBRT resistance and increase therapeutic benefits in vivo at lower doses of radiation. In patients with primary melanoma, lung or breast adenocarcinoma developing brain metastasis, endogenous S100A9 levels in brain lesions correlated with clinical response to WBRT and underscored the potential of S100A9 levels in the blood as a noninvasive biomarker. Collectively, we provide a molecular framework to personalize WBRT and improve its efficacy through combination with a radiosensitizer that balances therapeutic benefit and toxicity.info:eu-repo/semantics/publishedVersio

    The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease

    Get PDF
    Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal.We thank members of the Cambridge BioResource Scientific Advisory Board and Management Committee for their support of our study and the National Institute for Health Research Cambridge Biomedical Research Centre for funding. K.D. is funded as a HSST trainee by NHS Health Education England. M.F. is funded from the BLUEPRINT Grant Code HEALTH-F5-2011-282510 and the BHF Cambridge Centre of Excellence [RE/13/6/30180]. J.R.S. is funded by a MRC CASE Industrial studentship, co-funded by Pfizer. J.D. is a British Heart Foundation Professor, European Research Council Senior Investigator, and National Institute for Health Research (NIHR) Senior Investigator. S.M., S.T, M.H, K.M. and L.D. are supported by the NIHR BioResource-Rare Diseases, which is funded by NIHR. Research in the Ouwehand laboratory is supported by program grants from the NIHR to W.H.O., the European Commission (HEALTH-F2-2012-279233), the British Heart Foundation (BHF) to W.J.A. and D.R. under numbers RP-PG-0310-1002 and RG/09/12/28096 and Bristol Myers-Squibb; the laboratory also receives funding from NHSBT. W.H.O is a NIHR Senior Investigator. The INTERVAL academic coordinating centre receives core support from the UK Medical Research Council (G0800270), the BHF (SP/09/002), the NIHR and Cambridge Biomedical Research Centre, as well as grants from the European Research Council (268834), the European Commission Framework Programme 7 (HEALTH-F2-2012-279233), Merck and Pfizer. DJR and DA were supported by the NIHR Programme ‘Erythropoiesis in Health and Disease’ (Ref. NIHR-RP-PG-0310-1004). N.S. is supported by the Wellcome Trust (Grant Codes WT098051 and WT091310), the EU FP7 (EPIGENESYS Grant Code 257082 and BLUEPRINT Grant Code HEALTH-F5-2011-282510). The INTERVAL study is funded by NHSBT and has been supported by the NIHR-BTRU in Donor Health and Genomics at the University of Cambridge in partnership with NHSBT. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, the Department of Health of England or NHSBT. D.G. is supported by a “la Caixa”-Severo Ochoa pre-doctoral fellowship

    Effectiveness of an intervention for improving drug prescription in primary care patients with multimorbidity and polypharmacy:Study protocol of a cluster randomized clinical trial (Multi-PAP project)

    Get PDF
    This study was funded by the Fondo de Investigaciones Sanitarias ISCIII (Grant Numbers PI15/00276, PI15/00572, PI15/00996), REDISSEC (Project Numbers RD12/0001/0012, RD16/0001/0005), and the European Regional Development Fund ("A way to build Europe").Background: Multimorbidity is associated with negative effects both on people's health and on healthcare systems. A key problem linked to multimorbidity is polypharmacy, which in turn is associated with increased risk of partly preventable adverse effects, including mortality. The Ariadne principles describe a model of care based on a thorough assessment of diseases, treatments (and potential interactions), clinical status, context and preferences of patients with multimorbidity, with the aim of prioritizing and sharing realistic treatment goals that guide an individualized management. The aim of this study is to evaluate the effectiveness of a complex intervention that implements the Ariadne principles in a population of young-old patients with multimorbidity and polypharmacy. The intervention seeks to improve the appropriateness of prescribing in primary care (PC), as measured by the medication appropriateness index (MAI) score at 6 and 12months, as compared with usual care. Methods/Design: Design:pragmatic cluster randomized clinical trial. Unit of randomization: family physician (FP). Unit of analysis: patient. Scope: PC health centres in three autonomous communities: Aragon, Madrid, and Andalusia (Spain). Population: patients aged 65-74years with multimorbidity (≥3 chronic diseases) and polypharmacy (≥5 drugs prescribed in ≥3months). Sample size: n=400 (200 per study arm). Intervention: complex intervention based on the implementation of the Ariadne principles with two components: (1) FP training and (2) FP-patient interview. Outcomes: MAI score, health services use, quality of life (Euroqol 5D-5L), pharmacotherapy and adherence to treatment (Morisky-Green, Haynes-Sackett), and clinical and socio-demographic variables. Statistical analysis: primary outcome is the difference in MAI score between T0 and T1 and corresponding 95% confidence interval. Adjustment for confounding factors will be performed by multilevel analysis. All analyses will be carried out in accordance with the intention-to-treat principle. Discussion: It is essential to provide evidence concerning interventions on PC patients with polypharmacy and multimorbidity, conducted in the context of routine clinical practice, and involving young-old patients with significant potential for preventing negative health outcomes. Trial registration: Clinicaltrials.gov, NCT02866799Publisher PDFPeer reviewe
    corecore