33 research outputs found
Caste-specific demography and phenology in bumblebees; modelling BeeWalk data
We present novel dynamic mixture models for the monitoring of bumblebee populations on an
unprecedented geographical scale, motivated by the UK citizen science scheme BeeWalk. The models
allow us for the First time to estimate bumblebee phenology and within-season productivity, defined as
the number of individuals in each caste per colony in the population in that year, from citizen science
data. All of these parameters are estimated separately for each caste, giving a means of considerable
ecological detail in examining temporal changes in the complex life-cycle of a social insect in the wild.
Due to the dynamic nature of the models, we are able to produce population trends for a number of
UK bumblebee species using the available time-series. Via an additional simulation exercise, we show
the extent to which useful information will increase if the survey continues, and expands in scale,
as expected. Bumblebees are extraordinarily important components of the ecosystem, providing
pollination services of vast economic impact and functioning as indicator species for changes in climate
or land-use. Our results demonstrate the changes in both phenology and productivity between years
and provide an invaluable tool for monitoring bumblebee populations, many of which are in decline,
in the UK and around the world
Recommended from our members
Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield
How insects promote crop pollination remains poorly understood in terms of the contribution of functional trait differences between species. We used meta-analyses to test for correlations between community abundance, species richness and functional trait metrics with oilseed rape yield, a globally important crop. While overall abundance is consistently important in predicting yield, functional divergence between species traits also showed a positive correlation. This result supports the complementarity hypothesis that pollination function is maintained by non-overlapping trait distributions. In artificially constructed communities (mesocosms), species richness is positively correlated with yield, although this effect is not seen under field conditions. As traits of the dominant species do not predict yield above that attributed to the effect of abundance alone, we find no evidence in support of the mass ratio hypothesis. Management practices increasing not just pollinator abundance, but also functional divergence, could benefit oilseed rape agriculture
CropPol: a dynamic, open and global database on crop pollination
This is the final version. Available from Wiley via the DOI in this record The original dataset (v1.1.0) of the CropPol database can be accessed from the ECOLOGY repository. Main upgrades of these datasets will be versioned and deposited in Zenodo (DOI: 10.5281/zenodo.5546600)Data availability. V.C. Computer programs and data-processing algorithms: The algorithms used in deriving, processing, or transforming data can be accessed in the DataS1.zip file and the Zenodo repository (DOI: 10.5281/zenodo.5546600). V.D. Archiving: The data is archived for long-term storage and access in Zenodo (DOI: 10.5281/zenodo.5546600)Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e. berry weight, number of fruits and kg per hectare, among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), Northern America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-05 (21 studies), 2006-10 (40), 2011-15 (88), and 2016-20 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA). This article is protected by copyright. All rights reserved.OBServ Projec
Recommended from our members
Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees
Recent concern over global pollinator declines has led to considerable research on the effects of pesticides on bees1, 2, 3, 4, 5. Although pesticides are typically not encountered at lethal levels in the field, there is growing evidence indicating that exposure to field-realistic levels can have sublethal effects on bees, affecting their foraging behaviour1, 6, 7, homing ability8, 9 and reproductive success2, 5. Bees are essential for the pollination of a wide variety of crops and the majority of wild flowering plants10, 11, 12, but until now research on pesticide effects has been limited to direct effects on bees themselves and not on the pollination services they provide. Here we show the first evidence to our knowledge that pesticide exposure can reduce the pollination services bumblebees deliver to apples, a crop of global economic importance. Bumblebee colonies exposed to a neonicotinoid pesticide provided lower visitation rates to apple trees and collected pollen less often. Most importantly, these pesticide-exposed colonies produced apples containing fewer seeds, demonstrating a reduced delivery of pollination services. Our results also indicate that reduced pollination service delivery is not due to pesticide-induced changes in individual bee behaviour, but most likely due to effects at the colony level. These findings show that pesticide exposure can impair the ability of bees to provide pollination services, with important implications for both the sustained delivery of stable crop yields and the functioning of natural ecosystems
Pollinator diversity: distribution, ecological function, and conservation
By facilitating plant reproduction, pollinators perform a crucial ecological function that supports the majority of the world’s plant diversity, and associated organisms, and a significant fraction of global agriculture. Thus pollinators are simultaneously vital to supporting both natural ecosystems and human food security, which is a unique position for such a diverse group of organisms. The past couple of decades have seen unprecedented interest in pollinators and pollination ecology, stimulated in part by concerns over the decline of pollinator abundance and diversity in some parts of the world. This review synthesizes what is currently understood about the taxonomic diversity of organisms that are known to act as pollinators; their distribution in both deep time and present space; the importance of their diversity for ecological function (including agro-ecology); changes to diversity and abundance over more recent timescales, including introduction of non-native species, and a discussion of arguments for conserving their diversity