199 research outputs found

    Bishydrazone-Based Antifungal Agents

    Get PDF
    Hydrazone compounds and pharmaceutical compositions including same are disclosed as having antifungal activity. Such compounds are useful for treating or preventing fungal conditions in a subject in need thereof by administering same

    Automated genome mining for natural products

    Full text link
    Abstract Background Discovery of new medicinal agents from natural sources has largely been an adventitious process based on screening of plant and microbial extracts combined with bioassay-guided identification and natural product structure elucidation. Increasingly rapid and more cost-effective genome sequencing technologies coupled with advanced computational power have converged to transform this trend toward a more rational and predictive pursuit. Results We have developed a rapid method of scanning genome sequences for multiple polyketide, nonribosomal peptide, and mixed combination natural products with output in a text format that can be readily converted to two and three dimensional structures using conventional software. Our open-source and web-based program can assemble various small molecules composed of twenty standard amino acids and twenty two other chain-elongation intermediates used in nonribosomal peptide systems, and four acyl-CoA extender units incorporated into polyketides by reading a hidden Markov model of DNA. This process evaluates and selects the substrate specificities along the assembly line of nonribosomal synthetases and modular polyketide synthases. Conclusion Using this approach we have predicted the structures of natural products from a diverse range of bacteria based on a limited number of signature sequences. In accelerating direct DNA to metabolomic analysis, this method bridges the interface between chemists and biologists and enables rapid scanning for compounds with potential therapeutic value.http://deepblue.lib.umich.edu/bitstream/2027.42/112362/1/12859_2008_Article_2915.pd

    Bis(\u3cem\u3eN\u3c/em\u3e-amidinohydrazones) and \u3cem\u3eN\u3c/em\u3e-(amidino)-\u3cem\u3eN\u3c/em\u3e\u27-aryl-bishydrazones: New Classes of Antibacterial/Antifungal Agents

    Get PDF
    The emergence of multidrug-resistant bacterial and fungal strains poses a threat to human health that requires the design and synthesis of new classes of antimicr obial agents. We evaluated bis(N-amidinohydrazones) and N-(amidino)-N\u27-aryl-bishydrazones for their antibacterial and antifungal activities against panels of Gram-positive/Gram-negative bacteria as well as fungi. We investigated their potential to develop resistance against both bacteria and fungi by a multi-step, resistance-selection method, explored their potential to induce the production of reactive oxygen species, and assessed their toxicity. In summary, we found that these compounds exhibited broad-spectrum antibacterial and antifungal activities against most of the tested strains with minimum inhibitory concentration (MIC) values ranging from \u3c 0.5- \u3e 500 μM against bacteria and 1.0- \u3e 31.3 μg/mL against fungi; and in most cases, they exhibited either superior or similar antimicrobial activity compared to those of the standard drugs used in the clinic. We also observed minimal emergence of drug resistance to these newly synthesized compounds by bacteria and fungi even after 15 passages, and we found weak to moderate inhibition of the human Ether-à-go-go-related gene (hERG) channel with acceptable IC50 values ranging from 1.12-3.29 μM. Overall, these studies sh ow that bis(N-amidinohydrazones) and N-(amidino)-N\u27-aryl-bishydrazones are potentially promising scaffolds for the discovery of novel antibacterial and antifungal agents

    CLUH regulates mitochondrial metabolism by controlling translation and decay of target mRNAs

    Get PDF
    Mitochondria are essential organelles that host crucial metabolic pathways and produce adenosine triphosphate. The mitochondrial proteome is heterogeneous among tissues and can dynamically change in response to different metabolic conditions. Although the transcriptional programs that govern mitochondrial biogenesis and respiratory function are well known, posttranscriptional regulatory mechanisms remain unclear. In this study, we show that the cytosolic RNA-binding protein clustered mitochondria homologue (CLUH) regulates the expression of a mitochondrial protein network supporting key metabolic programs required under nutrient deprivation. CLUH exerts its function by controlling the stability and translation of target messenger RNAs. In the absence of Cluh, mitochondria are severely depleted of crucial enzymes involved in catabolic energy-converting pathways. CLUH preserves oxidative mitochondrial function and glucose homeostasis, thus preventing death at the fetal–neonatal transition. In the adult liver, CLUH ensures maximal respiration capacity and the metabolic response to starvation. Our results shed new light on the posttranscriptional mechanisms controlling the expression of mitochondrial proteins and suggest novel strategies to tailor mitochondrial function to physiological and pathological conditions.Peer reviewe
    • …
    corecore