91 research outputs found

    Deficiency in clonogenic endometrial mesenchymal stem cells in obese women with reproductive failure – a pilot study

    Get PDF
    The mechanisms of obesity associated reproductive complications remain poorly understood. Endometrial mesenchymal stem-cells are critical for cyclic renewal and uterine function. Recently, W5C5+ cells, with high clonogenicity, capable of producing endometrial stroma in vivo, have been described. We sought to investigate the abundance and cloning efficiency of W5C5+ and W5C5− endometrial cells in relation to Body Mass Index, age and reproductive outcome. Design W5C5+ and W5C5− cells were purified from mid-luteal endometrial biopsies (n = 54) by magnetic bead separation and subjected to in vitro colony-forming assays. Results First trimester pregnancy losses were significantly higher in obese subjects (n = 12) compared to overweight (n = 20) and subjects with normal Body Mass Index (n = 22) (P0.05). Conclusions Our observations suggest that the regenerative capacity and plasticity of the endometrium of obese women is suboptimal, which in turn may account for the increased risk of reproductive complications associated with obesity

    The Transcriptome of Human Endometrial Mesenchymal Stem Cells Under TGFβR Inhibition Reveals Improved Potential for Cell-Based Therapies

    Get PDF
    Mesenchymal stem/stromal cells (MSCs) are multipotent cells with favorable properties for cell therapies and regenerative medicine. Human endometrium harbors a small population of perivascular, clonogenic MSCs (eMSCs) identified by the SUSD2 marker. As for other MSCs, eMSCs require extensive in vitro expansion to generate clinically relevant numbers of cells, resulting in spontaneous differentiation, replicative senescence and cell death, decreasing therapeutic potency. We previously demonstrated that A83-01, a TGF-β receptor inhibitor, maintained eMSC clonogenicity, promoted proliferation, prevented apoptosis and maintained MSC function in vitro. Here we compare the transcriptome of passaged eMSCs from six women cultured with and without A83-01 for 7 days. We identified 1206 differentially expressed genes (DEG) using a false discovery rate cut-off at 0.01 and fold change >2. Significant enrichment of genes involved in anti-inflammatory responses, angiogenesis, cell migration and proliferation, and collagen fibril and extracellular matrix organization were revealed. TGF-β, Wnt and Akt signaling pathways were decreased. Anti-fibrotic and anti-apoptotic genes were induced, and fibroblast proliferation and myofibroblast related genes were downregulated. We found increased MSC potency genes (TWIST1, TWIST2, JAG1, LIFR, and SLIT2) validating the enhanced potency of A83-01-treated eMSCs, and importantly no pluripotency gene expression. We also identified eMSCs’ potential for secreting exosomes, possibly explaining their paracrine properties. Angiogenic and cytokine protein arrays confirmed the angiogenic, anti-fibrotic and immunomodulatory phenotype of A83-01-treated eMSCs, and increased angiogenic activity was functionally demonstrated in vitro. eMSCs culture expanded with A83-01 have enhanced clinically relevant properties, suggesting their potential for cell-therapies and regenerative medicine applications

    Generation of Human Female Reproductive Tract Epithelium from Human Embryonic Stem Cells

    Get PDF
    BACKGROUND: Recent studies have identified stem/progenitor cells in human and mouse uterine epithelium, which are postulated to be responsible for tissue regeneration and proliferative disorders of human endometrium. These progenitor cells are thought to be derived from Müllerian duct (MD), the primordial female reproductive tract (FRT). METHODOLOGY/PRINCIPAL FINDINGS: We have developed a model of human reproductive tract development in which inductive neonatal mouse uterine mesenchyme (nMUM) is recombined with green fluorescent protein (GFP)-tagged human embryonic stem cells (hESCs); GFP-hESC (ENVY). We demonstrate for the first time that hESCs can be differentiated into cells with a human FRT epithelial cell phenotype. hESC derived FRT epithelial cells emerged from cultures containing MIXL1(+) mesendodermal precursors, paralleling events occurring during normal organogenesis. Following transplantation, nMUM treated embryoid bodies (EBs) generated epithelial structures with a typical MD phenotype that expressed the MD markers PAX2, HOXA10. Functionally, the hESCs derived FRT epithelium responded to exogenous estrogen by proliferating and secreting uterine-specific glycodelin A (GdA). CONCLUSIONS/SIGNIFICANCE: These data show nMUM can induce differentiation of hESC to form the FRT epithelium. This may provide a model to study early developmental events of the human FRT

    Impact of sustained transforming growth factor-β receptor inhibition on chromatin accessibility and gene expression in cultured human endometrial MSC

    Get PDF
    Endometrial mesenchymal stem cells (eMSC) drive the extraordinary regenerative capacity of the human endometrium. Clinical application of eMSC for therapeutic purposes is hampered by spontaneous differentiation and cellular senescence upon large-scale expansion in vitro. A83-01, a selective transforming growth factor-β receptor (TGFβ-R) inhibitor, promotes expansion of eMSC in culture by blocking differentiation and senescence, but the underlying mechanisms are incompletely understood. In this study, we combined RNA-seq and ATAC-seq to study the impact of sustained TGFβ-R inhibition on gene expression and chromatin architecture of eMSC. Treatment of primary eMSC with A83-01 for 5 weeks resulted in differential expression of 1,463 genes. Gene ontology analysis showed enrichment of genes implicated in cell growth whereas extracellular matrix genes and genes involved in cell fate commitment were downregulated. ATAC-seq analysis demonstrated that sustained TGFβ-R inhibition results in opening and closure of 3,555 and 2,412 chromatin loci, respectively. Motif analysis revealed marked enrichment of retinoic acid receptor (RAR) binding sites, which was paralleled by the induction of RARB, encoding retinoic acid receptor beta (RARβ). Selective RARβ inhibition attenuated proliferation and clonogenicity of A83-01 treated eMSC. Taken together, our study provides new insights into the gene networks and genome-wide chromatin changes that underpin maintenance of an undifferentiated phenotype of eMSC in prolonged culture

    Ovine multiparity is associated with diminished vaginal muscularis, increased elastic fibres and vaginal wall weakness: implication for pelvic organ prolapse

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Pelvic Organ Prolapse (POP) is a major clinical burden affecting 25% of women, with vaginal delivery a major contributing factor. We hypothesised that increasing parity weakens the vagina by altering the extracellular matrix proteins and smooth muscle thereby leading to POP vulnerability. We used a modified POP-quantification (POP-Q) system and a novel pressure sensor to measure vaginal wall weakness in nulliparous, primiparous and multiparous ewes. These measurements were correlated with histological, biochemical and biomechanical properties of the ovine vagina. Primiparous and multiparous ewes had greater displacement of vaginal tissue compared to nulliparous at points Aa, Ap and Ba and lower pressure sensor measurements at points equivalent to Ap and Ba. Vaginal wall muscularis of multiparous ewes was thinner than nulliparous and had greater elastic fibre content. Collagen content was lower in primiparous than nulliparous ewes, but collagen organisation did not differ. Biomechanically, multiparous vaginal tissue was weaker and less stiff than nulliparous. Parity had a significant impact on the structure and function of the ovine vaginal wall, as the multiparous vaginal wall was weaker and had a thinner muscularis than nulliparous ewes. This correlated with “POP-Q” and pressure sensor measurements showing greater tissue laxity in multiparous compared to nulliparous ewes

    Nominalphrasen in literarischen Texten : Strukturtypen und Funktionen beim Figurenentwurf in Werken des 20. und 21. Jahrhunderts

    Get PDF
    Nominalphrasen und ihre Teile tragen wesentlich dazu bei, Wissen über literarische Figuren einzuführen und eingeführtes figurenbezogenes Wissen an relevanten Stellen zu aktualisieren. Das vorliegende Buch bewegt sich an der Schnittstelle von Grammatik und Textlinguistik: Anhand von ausgewählten Werken des 20. und 21. Jahrhunderts wird systematisch und detailliert dargestellt, welche Strukturtypen von Nominalphrasen eingesetzt werden, um bei der Figureneinführung bzw. beim Weiterreden über literarische Figuren bestimmte Dimensionen der Figurencharakterisierung anzusprechen. In einer Fallstudie wird darüber hinaus nach der Dynamik des Wissensaufbaus im Textstrom gefragt

    Radiotherapy exposure directly damages the uterus and causes pregnancy loss

    Get PDF
    Female cancer survivors are significantly more likely to experience infertility than the general population. It is well established that chemotherapy and radiotherapy can damage the ovary and compromise fertility, yet the ability of cancer treatments to induce uterine damage, and the underlying mechanisms, have been understudied. Here, we show that in mice total-body γ-irradiation (TBI) induced extensive DNA damage and apoptosis in uterine cells. We then transferred healthy donor embryos into ovariectomized adolescent female mice that were previously exposed to TBI to study the impacts of radiotherapy on the uterus independent from effects to ovarian endocrine function. Following TBI, embryo attachment and implantation were unaffected, but fetal resorption was evident at midgestation in 100% of dams, suggesting failed placental development. Consistent with this hypothesis, TBI impaired the decidual response in mice and primary human endometrial stromal cells. TBI also caused uterine artery endothelial dysfunction, likely preventing adequate blood vessel remodeling in early pregnancy. Notably, when pro-apoptotic protein Puma-deficient (Puma-/-) mice were exposed to TBI, apoptosis within the uterus was prevented, and decidualization, vascular function, and pregnancy were restored, identifying PUMA-mediated apoptosis as a key mechanism. Collectively, these data show that TBI damages the uterus and compromises pregnancy success, suggesting that optimal fertility preservation during radiotherapy may require protection of both the ovaries and uterus. In this regard, inhibition of PUMA may represent a potential fertility preservation strategy.</p

    the impact of uterine immaturity on obstetrical syndromes during adolescence

    Get PDF
    Pregnant nulliparous adolescents are at increased risk, inversely proportional to their age, of major obstetric syndromes, including preeclampsia, fetal growth restriction, and preterm birth. Emerging evidence indicates that biological immaturity of the uterus accounts for the increased incidence of obstetrical disorders in very young mothers, possibly compounded by sociodemographic factors associated with teenage pregnancy. The endometrium in most newborns is intrinsically resistant to progesterone signaling, and the rate of transition to a fully responsive tissue likely determines pregnancy outcome during adolescence. In addition to ontogenetic progesterone resistance, other factors appear important for the transition of the immature uterus to a functional organ, including estrogen-dependent growth and tissue-specific conditioning of uterine natural killer cells, which plays a critical role in vascular adaptation during pregnancy. The perivascular space around the spiral arteries is rich in endometrial mesenchymal stem-like cells, and dynamic changes in this niche are essential to accommodate endovascular trophoblast invasion and deep placentation. Here we evaluate the intrinsic (uterine-specific) mechanisms that predispose adolescent mothers to the great obstetrical syndromes and discuss the convergence of extrinsic risk factors that may be amenable to intervention

    ENDOCELL-Seud : a Delphi protocol to harmonise methods in endometrial cell culturing

    Get PDF
    culturing of endometrial cells obtained from the uterine mucosa or ectopic sites is used to study molecular and cellular signalling relevant to physiologic and pathologic reproductive conditions. However, the lack of consensus on standard operating procedures for deriving, characterising and maintaining primary cells in two- or three-dimensional cultures from eutopic or ectopic endometrium may be hindering progress in this area of research. Guidance for unbiased in vitro research methodologies in the field of reproductive science remains essential to increase confidence in the reliability of in vitro models. We present herein the protocol for a Delphi process to develop a consensus on in vitro methodologies using endometrial cells (ENDOCELL-Seud Project). A steering committee composed of leading scientists will select critical methodologies, topics and items that need to be harmonised and that will be included in a survey. An enlarged panel of experts (ENDOCELL-Seud Working Group) will be invited to participate in the survey and provide their ratings to the items to be harmonised. According to Delphi, an iterative investigation method will be adopted. Recommended measures will be finalised by the steering committee. The study received full ethical approval from the Ethical Committee of the Maastricht University (ref. FHML-REC/2021/103). The study findings will be available in both peer-reviewed articles and will also be disseminated to appropriate audiences at relevant conferences

    Endometrial Stem/Progenitor Cells: Prospects and Challenges

    No full text
    The human endometrium is one of the most regenerative tissues in the body, undergoing over 400 cycles of menstrual shedding and regeneration during reproductive life [...]
    corecore