32 research outputs found

    Studies on Potential Pesticides-Part XIV : Synthesis and Biological Activities of some new Thiosemicarbazide and Triazole Derivatives

    Get PDF
    Some new N-[5-(substituted phenoxymethyl)-1,3,4-oxadiazoly1-2-thioacetyl]-N-aryl-thiosemicarbazides have been synthesised by the condensation of appropriate hydrazine with aryliosothiocyanates. Cyclisation of these thiosemicarbazides in alkaline medium gives 3-[5-(substituted phenoxymethyl)-1,3,4-oxadiazolyl-2-thioacetyl]-4-aryl-5-mercapto-1,2,4-triazoles. All these compounds have been evaluated for their antibacterial properties and some of these have been screened for their anti fungal activity and AChE inhibition

    A Novel computer assisted genomic test method to detect breast cancer in reduced cost and time using ensemble technique

    Get PDF
    Breast cancer is the leading cause of death among women around the world. It is a primary malignancy for which genetic markers have revealed the ability for clinical decision making. It is a genetic disease that generates due to gene mutations, but the cost of a genetic test is relatively high for a number of patients in developing nations like India. The results of a genetic test can take a few weeks to determine cancer. This time duration influences the prognosis of genes since certain patients suffer from a high rate of malignant cell proliferation. Therefore, a computer-assisted genetic test method (CAGT) is proposed to detect breast cancer. This test method will predict the gene expressions and convert these expressions in the state of mutation (under-expression (-1), transition (0) overexpression (1)) and afterwards perform the classification to get the benign and malignant class in reduced time and cost. In the research work, machine learning techniques are applied to identify the most responsive genes of breast cancer on the premises of the clinical report of a patient and generated a CAGT. In the research work, the hard voting ensemble approach is applied to detect breast cancer on the basis of most responsive genes by CAGT which leads to improving 3.5% accuracy in cancer classification

    rst Transcriptional Activity Influences kirre mRNA Concentration in the Drosophila Pupal Retina during the Final Steps of Ommatidial Patterning

    Get PDF
    Background: Drosophila retinal architecture is laid down between 24-48 hours after puparium formation, when some of the still uncommitted interommatidial cells (IOCs) are recruited to become secondary and tertiary pigment cells while the remaining ones undergo apoptosis. This choice between survival and death requires the product of the roughest (rst) gene, an immunoglobulin superfamily transmembrane glycoprotein involved in a wide range of developmental processes. Both temporal misexpression of Rst and truncation of the protein intracytoplasmic domain, lead to severe defects in which IOCs either remain mostly undifferentiated and die late and erratically or, instead, differentiate into extra pigment cells. Intriguingly, mutants not expressing wild type protein often have normal or very mild rough eyes. Methodology/Principal Findings: By using quantitative real time PCR to examine rst transcriptional dynamics in the pupal retina, both in wild type and mutant alleles we showed that tightly regulated temporal changes in rst transcriptional rate underlie its proper function during the final steps of eye patterning. Furthermore we demonstrated that the unexpected wild type eye phenotype of mutants with low or no rst expression correlates with an upregulation in the mRNA levels of the rst paralogue kin-of-irre (kirre), which seems able to substitute for rst function in this process, similarly to their role in myoblast fusion. This compensatory upregulation of kirre mRNA levels could be directly induced in wild type pupa upon RNAi-mediated silencing of rst, indicating that expression of both genes is also coordinately regulated in physiological conditions. Conclusions/Significance: These findings suggest a general mechanism by which rst and kirre expression could be fine tuned to optimize their redundant roles during development and provide a clearer picture of how the specification of survival and apoptotic fates by differential cell adhesion during the final steps of retinal morphogenesis in insects are controlled at the transcriptional level

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    A Novel computer assisted genomic test method to detect breast cancer in reduced cost and time using ensemble technique

    Get PDF
    Breast cancer is the leading cause of death among women around the world. It is a primary malignancy for which genetic markers have revealed the ability for clinical decision making. It is a genetic disease that generates due to gene mutations, but the cost of a genetic test is relatively high for a number of patients in developing nations like India. The results of a genetic test can take a few weeks to determine cancer. This time duration influences the prognosis of genes since certain patients suffer from a high rate of malignant cell proliferation. Therefore, a computer-assisted genetic test method (CAGT) is proposed to detect breast cancer. This test method will predict the gene expressions and convert these expressions in the state of mutation (under-expression (-1), transition (0) overexpression (1)) and afterwards perform the classification to get the benign and malignant class in reduced time and cost. In the research work, machine learning techniques are applied to identify the most responsive genes of breast cancer on the premises of the clinical report of a patient and generated a CAGT. In the research work, the hard voting ensemble approach is applied to detect breast cancer on the basis of most responsive genes by CAGT which leads to improving 3.5% accuracy in cancer classification

    STRAIN IMPROVEMENT OF A POTENT BENZO-A-PYRENE (BAP) DEGRADER Bacillus Subtilis BMT4I (MTCC 9447)

    No full text
    ABSTRACT Benzo [a] pyrene (BaP), a pentacyclic polyaromatic hydrocarbon, is 1 of the 12 target compounds defined in the new US Environmental Protection Agency's strategy for controlling persistent, bioaccumulative, and toxic pollutants. We previously isolated a novel strain Bacillus subtilis BMT4i (MTCC) capable of utilizing BaP as sole source of carbon and energy and degrading BaP via an inducible chromosomally encoded pathway. The present study was done to improve the BaP degradation ability of B. subtilis BMT4i by means of inducing random mutations through treating BMT4i with physical mutagen (UV irradiation) or chemical mutagens such as ethyl methane sulfonate (EMS), 5-bromo uracil (5-BU) and acridine orange (AO). The observation showed that a UV mutant BMT4imuv2, amongst various other mutants exhibited highest BaP degradation up to 62% which was significantly superior in comparison to the control wild type BMT4i that showed 46% BaP degradation. The BMT4imuv2 was further characterized by time course experiment which showed almost 100% BaP degradation on completion of 28 days in contrary to 84.66% by control wild type BMT4i confirming a substantial improvement of the BaP degradation potential of BMT4i after treatment with physical mutagen UV (254 nm). The growth scenario of the mutant was found to be somewhat different. BMT4imuv2 showed a steep increase in the log values reaching to 16.60 after 2 days attaining maxima of 45.47 log 10 CFU/ml after 7 days. Further, increase in incubation period led to decline in the cell number reaching 0.00 after 28 days. In view of the above, it could be concluded tha

    Spinocerebellar ataxia 7 (SCA7) in Indian population: predilection of ATXN7-CAG expansion mutation in an ethnic population

    No full text
    Background & objectives: Spinocerebellar ataxia 7 (SCA7) is a rare form of neurodegenerative disorder with the clinical manifestation of cerebellar ataxia and retinal degeneration. In this study we describe the clinico-genetic characteristics of nine SCA7 families of Indian origin and cross compare these with other available worldwide studies. Methods: Thirty five individuals from nine SCA7 families were clinico-genetically characterized and CAG repeat distribution analysis was carried out in 382 control DNA samples from healthy controls (derived from 21 diverse Indian populations based on ethnic and linguistic and geographical location). Results: Of the nine families studied, 22 affected individuals and one asymptomatic carrier were identified. The average age at disease onset was 23.4±12.6 yr. The length of expanded CAG ranged from 40-94 with mean value of 53.2±13.9. The main clinical findings in affecteds individuals included cerebellar ataxia, and retinal degeneration along with hyper-reflexia (95%), slow saccades (85%) and spasticity (45%). Analysis of the association of number of CAG repeats with disease onset revealed that <49 repeats were associated with earlier age at onset in South East Asians compared to European populations. Further analysis of CAG repeats from 21 diverse Indian populations showed pre-mutable repeats (28-34) alleles in the IE-N-LP2 population. Six of the nine families identified in this study belonged to the same ethnic population. Interpretations & Conclusion: Our results show that presenece of SCA7 is relatively rare and confined to one ethnic group from Haryana region of India. We observed a homogeneous phenotypic expression of SCA7 mutation as described earlier and an earlier age of onset in our patients with CAG <49. The identification of pre-mutable allele in IE-N-LP2 suggests this population to be at the risk of SCA7
    corecore