89 research outputs found

    A critical review of resource recovery from municipal wastewater treatment plants : market supply potentials, technologies and bottlenecks

    Get PDF
    In recent decades, academia has elaborated a wide range of technological solutions to recover water, energy, fertiliser and other products from municipal wastewater treatment plants. Drivers for this work range from low resource recovery potential and cost effectiveness, to the high energy demands and large environmental footprints of current treatment-plant designs. However, only a few technologies have been implemented and a shift from wastewater treatment plants towards water resource facilities still seems far away. This critical review aims to inform decision-makers in water management utilities about the vast technical possibilities and market supply potentials, as well as the bottlenecks, related to the design or redesign of a municipal wastewater treatment process from a resource recovery perspective. Information and data have been extracted from literature to provide a holistic overview of this growing research field. First, reviewed data is used to calculate the potential of 11 resources recoverable from municipal wastewater treatment plants to supply national resource consumption. Depending on the resource, the supply potential may vary greatly. Second, resource recovery technologies investigated in academia are reviewed comprehensively and critically. The third section of the review identifies nine non-technical bottlenecks mentioned in literature that have to be overcome to successfully implement these technologies into wastewater treatment process designs. The bottlenecks are related to economics and value chain development, environment and health, and society and policy issues. Considering market potentials, technological innovations, and addressing potential bottlenecks early in the planning and process design phase, may facilitate the design and integration of water resource facilities and contribute to more circular urban water management practices

    Natural pigments from microalgae grown in industrial wastewater

    No full text
    The aim of this study was to investigate the cultivation of Nostoc sp., Arthrospira platensis and Porphyridium purpureum in industrial wastewater to produce phycobiliproteins. Initially, light intensity and growth medium composition were optimized, indicating that light conditions influenced the phycobiliproteins production more than the medium composition. Conditions were then selected, according to biomass growth, nutrients removal and phycobiliproteins production, to cultivate these microalgae in food-industry wastewater. The three species could efficiently remove up to 98%, 94% and 100% of COD, inorganic nitrogen and PO43--P, respectively. Phycocyanin, allophycocyanin and phycoerythrin were successfully extracted from the biomass reaching concentrations up to 103, 57 and 30 mg/g dry weight, respectively. Results highlight the potential use of microalgae for industrial wastewater treatment and related high-value phycobiliproteins recovery

    Strategies to optimize microalgae conversion to biogas: co-digestion, pretreatment and hydraulic retention time

    Full text link
    This study aims at optimizing the anaerobic digestion (AD) of biomass in microalgal-based wastewater treatment systems. It comprises the co-digestion of microalgae with primary sludge, the thermal pretreatment (75 ◦C for 10 h) of microalgae and the role of the hydraulic retention time (HRT) in anaerobic digesters. Initially, a batch test comparing different microalgae (untreated and pretreated) and primary sludge proportions showed how the co-digestion improved the AD kinetics. The highest methane yield was observed by adding 75% of primary sludge to pretreated microalgae (339 mL CH4/g VS). This condition was then investigated in mesophilic lab-scale reactors. The average methane yield was 0.46 L CH4/g VS, which represented a 2.9-fold increase compared to pretreated microalgae mono-digestion. Conversely, microalgae showed a low methane yield despite the thermal pretreatment (0.16 L CH4/g VS). Indeed, microscopic analysis confirmed the presence of microalgae species with resistant cell walls (i.e., Stigioclonium sp. and diatoms). In order to improve their anaerobic biodegradability, the HRT was increased from 20 to 30 days, which led to a 50% methane yield increase. Overall, microalgae AD was substantially improved by the co-digestion with primary sludge, even without pretreatment, and increasing the HRT enhanced the AD of microalgae with resistant cell walls

    Potential of biogas production to reduce firewood consumption in remote high-elevation Himalayan communities in Nepal

    Full text link
    Remote communities in the Nepalese mountains above 2500 m a.s.l. belong to the most precarious in the world. Inhabitants struggle for the minimum in terms of safe drinking water, food and sanitation. Reliable, affordable and clean energy for cooking, room heating and warm water for personal hygiene is often lacking and dependency on firewood very high. The remoteness and unlikeliness of electric grid connection in the coming decades make a diversified energy supply from renewable local resources crucial. Small-scale anaerobic digestion (AD) of organic substrates has been used for long in rural areas of developing countries to produce biogas as energy source and recover residue as organic fertilizer. AD is challenging at high elevations due to year around lower ambient temperatures and lower annual biomass production per area compared to lowlands. Nevertheless, examples of operational household AD exist even above 3000 m a.s.l. in the Andes. Here we compare firewood consumption with biogas potential from organic substrates in a community with 39 households at 3150 m a.s.l. in Jumla District, Nepal. In five households with varying numbers of members and animals kept, mean firewood use and its energy content per capita (cap) and day (d) were 2.1 kg or ca. 25 MJ in spring and 2.3 kg or ca. 28 MJ in winter. Easily available substrates include cow, sheep and horse dung from overnight shelters and human excrements from pit latrines, amounting on average to 1.7 kg wet weight (kgww) cap−1 d−1 in spring and 2.2 kgww cap−1 d−1 in winter. Adjusted to normal conditions (Nm3 at 0 °C, 1013.15 hPa), these substrates yielded on average 0.08 Nm3 cap−1 d−1 biogas in spring and 0.12 Nm3 cap−1 d−1 in winter (35–60% methane content) in biochemical methane potential (BMPs) tests at 36 °C. This could provide up to 60% of basic cooking needs on average and up to 75% in a “typical” household in terms of members and animals kept. Of the overall thermal energy needs including also room heating ca. 10–20% could be covered, substituting 0.1–0.4 (mean: 0.2) kg firewood cap−1 d−1. If only animal dung and human excrements are considered, no competition for resources arises as residues can still be used as organic fertilizer. This study supports the design and introduction of planned pilot digesters integrated into on-going community development including pit latrines for substrate availability, greenhouses as possible way of thermal insulation, and planned pico-hydropower plants to use excess electricity during the night for digester heating

    Natural pigments and biogas recovery from microalgae grown in wastewater

    Get PDF
    This study assessed the recovery of natural pigments (phycobiliproteins) and bioenergy (biogas) from microalgae grown in wastewater. A consortium of microalgae, mainly composed by Nostoc, Phormidium, and Geitlerinema, known to have high phycobiliproteins content, was grown in photobioreactors. The growth medium was composed by secondary effluent from a high rate algal pond (HRAP) along with the anaerobic digestion centrate, which aimed to enhance the N/P ratio, given the lack of nutrients in the secondary effluent. Additionally, the centrate is still a challenging anaerobic digestion residue since the high nitrogen concentrations have to be removed before disposal. Removal efficiencies up to 52% of COD, 86% of NH4+-N, and 100% of phosphorus were observed. The biomass composition was monitored over the experimental period in order to ensure stable cyanobacterial dominance in the mixed culture. Phycocyanin and phycoerythrin were extracted from harvested biomass, achieving maximum concentrations of 20.1 and 8.1 mg/g dry weight, respectively. The residual biomass from phycobiliproteins extraction was then used to produce biogas, with final methane yields ranging from 159 to 199 mL CH4/g VS. According to the results, by combining the extraction of pigments and the production of biogas from residual biomass, we would not only obtain high-value compounds, but also more energy (around 5-10% higher), as compared to the single recovery of biogas. The proposed process poses an example of resource recovery from biomass grown in wastewater, moving toward a circular bioeconomy

    Contaminants removal and bacterial activity enhancement along the flow path of constructed wetland microbial fuel cells

    Get PDF
    Microbial fuel cells implemented in constructed wetlands (CW-MFCs), albeit a relatively new technology still under study, have shown to improve treatment efficiency of urban wastewater. So far the vast majority of CW-MFC systems investigated were designed as lab-scale systems working under rather unrealistic hydraulic conditions using synthetic wastewater. The main objective of this work was to quantify CW-MFCs performance operated under different conditions in a more realistic setup using meso-scale systems with horizontal flow fed with real urban wastewater. Operational conditions tested were organic loading rate (4.9+-1.6, 6.7+-1.4 and 13.6+-3.2 g COD/m2.day) and hydraulic regime (continuous vs intermittent feeding) as well as different electrical connections: CW control (conventional CW without electrodes), open-circuit CW-MFC (external circuit between anode and cathode not connected) and closed-circuit CW-MFC (external circuit connected). Eight horizontal subsurface flow CWs were operated for about four months. Each wetland consisted of a PVC reservoir of 0.193 m2 filled with 4/8 mm granitic riverine gravel. All wetlands had intermediate sampling points for gravel and interstitial liquid sampling. The CW-MFCs were designed as three MFCs incorporated one after the other along the flow path of the CWs. Results showed no significant differences between tested organic loading rates, hydraulic regimes or electrical connections, however, on average, systems operated in closed-circuit CW-MFC mode under continuous flow outperformed the other experimental conditions. Closed-circuit CW-MFC compared to conventional CW control systems showed around 5% and 22% higher COD and ammonium removal, respectively. Correspondingly, overall bacteria activity, as measured by the fluorescein diacetate technique, was higher (4% to 34%) in closed-circuit systems when compared to CW control systems.Comment: 39 pages, 8 Figure

    Perspective Chapter: A Novel Method for Integrated Multicriteria Decision-Making with Uncertainty: A Case Study on Sustainable Agriculture in Colombia

    Get PDF
    Multicriteria decision-making usually requires a set of experts to evaluate the importance of selected criteria and the adequacy of feasible alternatives according to the criteria. Uncertainty can arise in these evaluations, since experts can be hesitant about their responses due to the difficulty of quantifying human language or lack of required knowledge. The Methodology for Integrated Multicriteria Decision-making with Uncertainty (MIMDU) tackles both factors of uncertainty by using non-predefined fuzzy numbers that are continuously adapted taking into account the level of confidence of the experts’ opinions. The methodology also offers useful and complementary information to lead to a robust decision-making. This chapter proposes a novel methodology and provides a sample use case to demonstrate its capability to model uncertainty during decision-making process. In particular, a sensitivity analysis is included, which demonstrates (i) how uncertainty is incorporated into alternatives evaluation, and (ii) that the integrated multicriteria decision-making with uncertainty can be more reliable for decision-makers. The methodology is applied to the robust selection of the most sustainable technology to improve agriculture efficiency in rural areas by means of a case study of a low-cost biogas digester in a small-scale farm in Colombia

    Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery

    Get PDF
    The aim of this study was to assess the potential environmental impacts associated with high rate algal ponds (HRAP) systems for wastewater treatment and resource recovery in small communities. To this aim, a Life Cycle Assessment (LCA) was carried out evaluating two alternatives: i) a HRAP system for wastewater treatment where microalgal biomass is valorized for energy recovery (biogas production); ii) a HRAP system for wastewater treatment where microalgal biomass is reused for nutrients recovery (biofertilizer production). Additionally, both alternatives were compared to a typical small-sized activated sludge system. An economic assessment was also performed. The results showed that HRAP system coupled with biogas production appeared to be more environmentally friendly than HRAP system coupled with biofertilizer production in the climate change, ozone layer depletion, photochemical oxidant formation, and fossil depletion impact categories. Different climatic conditions have strongly influenced the results obtained in the eutrophication and metal depletion impact categories. In fact, the HRAP system located where warm temperatures and high solar radiation are predominant (HRAP system coupled with biofertilizer production) showed lower impact in those categories. Additionally, the characteristics (e.g. nutrients and heavy metals concentration) of microalgal biomass recovered from wastewater appeared to be crucial when assessing the potential environmental impacts in the terrestrial acidification, particulate matter formation and toxicity impact categories. In terms of costs, HRAP systems seemed to be more economically feasible when combined with biofertilizer production instead of biogas. On the whole, implementing HRAPs instead of activated sludge systems might increase sustainability and cost-effectiveness of wastewater treatment in small communities, especially if implemented in warm climate regions and coupled with biofertilizer production.Peer ReviewedPostprint (author's final draft

    A new integral management model and evaluation method to enhance sustainability of renewable energy projects for energy and sanitation services

    Get PDF
    Autonomous systems based on the use of renewable energy (RE) have proven suitable for providing energy and sanitation services to isolated communities. However, most of these projects fail due to managerial weaknesses. Designing an appropriate management model is a key issue for sustainability and it is especially complex when includes different RE technologies. This paper is aimed at developing a novel management model for RE projects to provide energy and sanitation services with any kind of technology. Moreover, a new method to evaluate the sustainability is proposed regarding technical, economic, social/ethical, environmental and institutional/organisational dimensions. The case study of Pucara (Peru) is presented, in which a RE project with six different technologies was implemented and the integral community management model was designed in 2011. The project sustainability was evaluated in 2013 and results showed that the management model has succeeded to strengthen sustainability, especially in the institutional/organisational aspects.The authors would like to thank the anonymous reviewers for their valuable comments, which have helped to enhance this paper. The authors are grateful for all the assistance and support provided by Practical Action-ITDG from Peru.Lillo Rodrigo, P.; Ferrer-Martí, L.; Fernández-Baldor, Á.; Ramírez, B. (2015). A new integral management model and evaluation method to enhance sustainability of renewable energy projects for energy and sanitation services. Energy for Sustainable Development. 29:1-12. doi:10.1016/j.esd.2015.08.003S1122

    Assessing the agricultural reuse of the digestate from microalgae anaerobic digestion and co-digestion with sewage sludge

    Get PDF
    Microalgae anaerobic digestion produces biogas along with a digestate that may be reused in agriculture. However, the properties of this digestate for agricultural reuse have yet to be determined. The aim of this study was to characterise digestates from different microalgae anaerobic digestion processes (i.e. digestion of untreated microalgae, thermally pretreated microalgae and thermally pretreated microalgae in co-digestion with primary sludge). The main parameters evaluated were organic matter, macronutrients and heavy metals content, hygenisation, potential phytotoxicity and organic matter stabilisation. According to the results, all microalgae digestates presented suitable organic matter and macronutrients, especially organic and ammonium nitrogen, for agricultural soils amendment. However, the thermally pretreated microalgae digestate was the least stabilised digestate in comparison with untreated microalgae and co-digestion digestates. In vivo bioassays demonstrated that the digestates did not show residual phytotoxicity when properly diluted, being the co-digestion digestate the one which presented less phytotoxicity. Heavy metals contents resulted far below the threshold established by the European legislation on sludge spreading. Moreover, low presence of E. coli was observed in all digestates. Therefore, agricultural reuse of thermally pretreated microalgae and primary sludge co-digestate through irrigation emerges a suitable strategy to recycle nutrients from wastewater
    corecore