175 research outputs found

    Tropospheric gravity waves observed by three closely spaced ST radars

    Get PDF
    Clear-air radar experiments were carried out on the southern coast of France during the (ALPEX) Alpine experiment program vertically directed stratosphere-troposphere-radars were set up with spacings of about 5 to 6 km. The temporal and spectral characteristics of the vertical velocity fluctuations were examined. The horizontal and vertical properties of gravity waves in the lower atmosphere were analyzed. The techniques used and the first results from this wave study are described

    Spin communication over 30 μ\mum long channels of chemical vapor deposited graphene on SiO2_2

    Get PDF
    We demonstrate a high-yield fabrication of non-local spin valve devices with room-temperature spin lifetimes of up to 3 ns and spin relaxation lengths as long as 9 μ\mum in platinum-based chemical vapor deposition (Pt-CVD) synthesized single-layer graphene on SiO2_2/Si substrates. The spin-lifetime systematically presents a marked minimum at the charge neutrality point, as typically observed in pristine exfoliated graphene. However, by studying the carrier density dependence beyond n ~ 5 x 1012^{12} cm−2^{-2}, via electrostatic gating, it is found that the spin lifetime reaches a maximum and then starts decreasing, a behavior that is reminiscent of that predicted when the spin-relaxation is driven by spin-orbit interaction. The spin lifetimes and relaxation lengths compare well with state-of-the-art results using exfoliated graphene on SiO2_2/Si, being a factor two-to-three larger than the best values reported at room temperature using the same substrate. As a result, the spin signal can be readily measured across 30 μ\mum long graphene channels. These observations indicate that Pt-CVD graphene is a promising material for large-scale spin-based logic-in-memory applications

    Characterisation of Mega-Constellation Links for LEO Missions with Applications to EO and ISS Use Cases

    Get PDF
    Satellite missions demand ever greater connectivity, especially in the LEO regime. In this paper, we introduce the new mega-constellation services in space paradigm: we show that mega constellations, deployed to offer innovative services to Earth’s users, can provide excellent connectivity to LEO spacecrafts, too. First, we characterise the communication link between space users and the actual OneWeb and Starlink constellations. A full set of results in terms of availability, access duration, Doppler, and path losses as a function of user orbital parameters, identifying optimal user orbits, is provided. The results achieved by a multi-system user able to communicate with both fleets are also presented. The potential improvements available if geostationary constellations are used to complement LEO mega constellations in a multi-orbit system are discussed, too. Finally, we focus on two LEO use cases, the International Space Station and an Earth Observation Sun Synchronous satellite. All the results demonstrate the numerous advantages of the mega-constellation connectivity solution, which is able to transform LEO spacecrafts into highly responsive nodes of a space-to-space networ

    Femtosecond control of electric currents at the interfaces of metallic ferromagnetic heterostructures

    Get PDF
    The idea to utilize not only the charge but also the spin of electrons in the operation of electronic devices has led to the development of spintronics, causing a revolution in how information is stored and processed. A novel advancement would be to develop ultrafast spintronics using femtosecond laser pulses. Employing terahertz (1012^{12} Hz) emission spectroscopy, we demonstrate optical generation of spin-polarized electric currents at the interfaces of metallic ferromagnetic heterostructures at the femtosecond timescale. The direction of the photocurrent is controlled by the helicity of the circularly polarized light. These results open up new opportunities for realizing spintronics in the unprecedented terahertz regime and provide new insights in all-optical control of magnetism.Comment: 3 figures and 2 tables in the main tex

    Field-free deterministic ultra fast creation of skyrmions by spin orbit torques

    Full text link
    Magnetic skyrmions are currently the most promising option to realize current-driven magnetic shift registers. A variety of concepts to create skyrmions were proposed and demonstrated. However, none of the reported experiments show controlled creation of single skyrmions using integrated designs. Here, we demonstrate that skyrmions can be generated deterministically on subnanosecond timescales in magnetic racetracks at artificial or natural defects using spin orbit torque (SOT) pulses. The mechanism is largely similar to SOT-induced switching of uniformly magnetized elements, but due to the effect of the Dzyaloshinskii-Moriya interaction (DMI), external fields are not required. Our observations provide a simple and reliable means for skyrmion writing that can be readily integrated into racetrack devices

    Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility

    Get PDF
    Antiferromagnets offer a unique combination of properties including the radiation and magnetic field hardness, the absence of stray magnetic fields, and the spin-dynamics frequency scale in terahertz. Recent experiments have demonstrated that relativistic spin-orbit torques can provide the means for an efficient electric control of antiferromagnetic moments. Here we show that elementary-shape memory cells fabricated from a single-layer antiferromagnet CuMnAs deposited on a III–V or Si substrate have deterministic multi-level switching characteristics. They allow for counting and recording thousands of input pulses and responding to pulses of lengths downscaled to hundreds of picoseconds. To demonstrate the compatibility with common microelectronic circuitry, we implemented the antiferromagnetic bit cell in a standard printed circuit board managed and powered at ambient conditions by a computer via a USB interface. Our results open a path towards specialized embedded memory-logic applications and ultra-fast components based on antiferromagnets
    • …
    corecore