154 research outputs found

    Picoplankton diversity in the South-East Pacific Ocean from cultures

    Get PDF
    International audienceIn late 2004, the BIOSOPE cruise sailed between the equatorial influenced waters off Marquesas islands and the nutrient enriched waters of the Chilean upwelling. Along the way, it explored the Southeast Pacific gyre centred around Easter Island, which is probably the most oligotrophic oceanic region on earth. During this cruise, we undertook a vigorous effort to isolate novel photosynthetic picoplanktonic eukaryotes. Two strategies were attempted on board: enrichment of samples with culture medium and sorting of specific populations by flow cytometry based on chlorophyll fluorescence. Over 1900 pre-cultures were started and then further purified by flow cytometry, serial dilution or pipette isolation to yield a total of 212 strains. These strains were characterized morphologically and for more than 50% of them, genetically, through partial sequencing of the 18 S rRNA gene. Among the characterized strains, the largest number are stramenopiles (Heterokontophyta) with a record of 38 strains belonging to the species Pelagomonas calceolata (Pelagophyceae). Strains from the recently described genera Bolidomonas and Florenciella have been re-isolated for the first time since their description. Two other abundant groups are the Chlorophyta, especially Prasinophyceae, and the Haptophyta, especially the genera Phaeocystis and Emiliania. A limited number of heterotrophic flagellates have also been isolated, all of them closely related to known species. Finally over a dozen of unicellular cyanobacteria strains have been obtained, some forming unusual short chains. Overall our strategy was quite successful since it allowed us to isolate a large number of picoplankton strains but failed in two respects. First, apparently very few novel taxa have been obtained. One set of strains is related to Prasinoderma coloniale (Prasinococcales, Prasinophyceae) but their sequences are sufficiently different from the latter to probably belong to a new genus or species. The sequences of two other strains are phylogenetically affiliated to stramenopile environmental sequences, probably corresponding a new algal class. Second, very few strains have been obtained from the very oligotrophic central gyre itself. Future work should probably combine flow cytometry sorting with culture media and cultivation approaches specifically developed for oligotrophic water species

    Synechococcus in the Atlantic Gateway to the Arctic Ocean

    Get PDF
    Increasing temperatures, with pronounced effects at high latitudes, have raised questions about potential changes in species composition, as well as possible increased importance of small-celled phytoplankton in marine systems. In this study, we mapped out one of the smallest and globally most widespread primary producers, the picocyanobacterium Synechococcus, within the Atlantic inflow to the Arctic Ocean. In contrast to the general understanding that Synechococcus is almost absent in polar oceans due to low temperatures, we encountered high abundances (up to 21,000 cells mL-1) at 79 °N, and documented their presence as far north as 82.5 °N. Covering an annual cycle in 2014, we found that during autumn and winter, Synechococcus was often more abundant than picoeukaryotes, which usually dominate the picophytoplankton communities in the Arctic. Synechococcus community composition shifted from a quite high genetic diversity during the spring bloom to a clear dominance of two specific operational taxonomic units (OTUs) in autumn and winter. We observed abundances higher than 1,000 cells mL-1 in water colder than 2 °C at seven distinct stations and size-fractionation experiments demonstrated a net growth of Synechococcus at 2 °C in the absence of nano-sized grazers at certain periods of the year. Phylogenetic analysis of petB sequences demonstrated that these high latitude Synechococcus group within the previously described cold-adapted clades I and IV, but also contributed to unveil novel genetic diversity, especially within clade I

    Relative stability of ploidy in a marine Synechococcus across various growth conditions

    Get PDF
    Marine picocyanobacteria of the genus Synechococcus are ubiquitous phototrophs in oceanic systems. Consistent with these organisms occupying vast tracts of the nutrient impoverished ocean, most marine Synechococcus so far studied are monoploid, i.e., contain a single chromosome copy. The exception is the oligoploid strain Synechococcus sp. WH7803, which on average possesses around 4 chromosome copies. Here, we set out to understand the role of resource availability (through nutrient deplete growth) and physical stressors (UV, exposure to low and high temperature) in regulating ploidy level in this strain. Using qPCR to assay ploidy status we demonstrate the relative stability of chromosome copy number in Synechococcus sp. WH7803. Such robustness in maintaining an oligoploid status even under nutrient and physical stress is indicative of a fundamental role, perhaps facilitating recombination of damaged DNA regions as a result of prolonged exposure to oxidative stress, or allowing added flexibility in gene expression via possessing multiple alleles

    Phytoplankton Diversity and Ecology through the Lens of High Throughput Sequencing Technologies

    Get PDF
    Metabarcoding or high-throughput sequencing of a specific genetic marker is a powerful technique, widely used today, to analyze biodiversity across distinct environments and taxonomic groups. Plankton ecologists have benefited tremendously from the growing accumulation of metabarcoding studies. Novel biogeographic patterns have been established by the analysis of datasets from the Tara Oceans and Ocean Sampling Day projects. Novel lineages without cultured representatives have been uncovered. This chapter begins by going back to the steps that led Carl Woese and George Fox to define the concept of “molecular marker.” Among the multitude of exciting findings brought by high-throughput sequencing technologies, perhaps the major impacts are found in the study of picocyanobacteria and microbial eukaryotes from plankton communities. We then detail the different steps and choices that are involved in designing, performing, and analyzing a metabarcoding study. We are using a compilation of about 250 metabarcoding studies to present the major trends in terms of the gene marker used and environment probed. An alternative approach to metabarcoding developed for marine picocyanobacteria is also briefly discussed. We are then focusing on specific habitats and processes that have benefited from metabarcoding: the study of polar ecosystems, the functioning of the marine biological carbon pump, predator-prey interactions, and picoeukaryotic phytoplankton in highly urbanized lakes. Finally, we offer some perspectives on emerging trends, such as the use of metabarcodes combined with supervised machine learning for biomonitoring, the link between metabarcoding and functional diversity in trait-based studies and the massive sequencing of long DNA fragments

    Changes in population age-structure obscure the temperature-size rule in marine cyanobacteria

    Get PDF
    The temperature-size Rule (TSR) states that there is a negative relationship between ambient temperature and body size. This rule has been independently evaluated for different phases of the life cycle in multicellular eukaryotes, but mostly for the average population in unicellular organisms. We acclimated two model marine cyanobacterial strains (Prochlorococcus marinus MIT9301 and Synechococcus sp. RS9907) to a gradient of temperatures and measured the changes in population age-structure and cell size along their division cycle. Both strains displayed temperature-dependent diel changes in cell size, and as a result, the relationship between temperature and average cell size varied along the day. We computed the mean cell size of new-born cells in order to test the prediction of the TSR on a single-growth stage. Our work reconciles previous inconsistent results when testing the TSR on unicellular organisms, and shows that when a single-growth stage is considered the predicted negative response to temperature is revealed.Versión del edito

    Interplay Between Differentially Expressed Enzymes Contributes to Light Color Acclimation in Marine Synechococcus

    Get PDF
    Marine Synechococcus, a globally important group of cyanobacteria, thrives in various light niches in part due to its varied photosynthetic light-harvesting pigments. Many Synechococcus strains use a process known as chromatic acclimation to optimize the ratio of two chromophores, green-light-absorbing phycoerythrobilin (PEB) and blue-light-absorbing phycourobilin (PUB), within their light-harvesting complexes. A full mechanistic understanding of how Synechococcus cells tune their PEB to PUB ratio during chromatic acclimation has not yet been obtained. Here, we show that interplay between two enzymes named MpeY and MpeZ controls differential PEB and PUB covalent attachment to the same cysteine residue. MpeY attaches PEB to the light-harvesting protein MpeA in green light, while MpeZ attaches PUB to MpeA in blue light. We demonstrate that the ratio of mpeY to mpeZ mRNA determines if PEB or PUB is attached. Additionally, strains encoding only MpeY or MpeZ do not acclimate. Examination of strains of Synechococcus isolated from across the globe indicates that the interplay between MpeY and MpeZ uncovered here is a critical feature of chromatic acclimation for marine Synechococcus worldwide

    Relationships between tea and other beverage consumption to work performance and mood

    Get PDF
    a b s t r a c t The aim of this research was to examine relationships between tea, coffee and other beverage consumption and associates of work performance and mood among individuals in relatively stressful and cognitively demanding work-place settings. Using a naturalistic, cross-sectional study design, 95 professional and academic staff logged their beverage intake and completed self-reports of associates of work performance (fatigue/exhaustion, mindfulness, work engagement), subjective work performance, mood, workrelated strain and recovery four times daily during ten working days. Data were analysed using multilevel modelling in keeping with the hierarchical structure of the data. Tea consumption was associated with increased perceived work performance and reduced tiredness, especially when consumed without milk or sugar. Consumption of non-caffeinated beverages was associated with increased relaxation and recovery from work. In contrast, tea and other caffeinated beverages were found to enhance the negative effects of evening recovery and morning mood on mindfulness during the day. The findings suggest that beverage intake may have a role in optimising work-related psychological states and performance

    Evolutionary Mechanisms of Long-Term Genome Diversification Associated With Niche Partitioning in Marine Picocyanobacteria.

    Full text link
    Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus are the most abundant photosynthetic organisms on Earth, an ecological success thought to be linked to the differential partitioning of distinct ecotypes into specific ecological niches. However, the underlying processes that governed the diversification of these microorganisms and the appearance of niche-related phenotypic traits are just starting to be elucidated. Here, by comparing 81 genomes, including 34 new Synechococcus, we explored the evolutionary processes that shaped the genomic diversity of picocyanobacteria. Time-calibration of a core-protein tree showed that gene gain/loss occurred at an unexpectedly low rate between the different lineages, with for instance 5.6 genes gained per million years (My) for the major Synechococcus lineage (sub-cluster 5.1), among which only 0.71/My have been fixed in the long term. Gene content comparisons revealed a number of candidates involved in nutrient adaptation, a large proportion of which are located in genomic islands shared between either closely or more distantly related strains, as identified using an original network construction approach. Interestingly, strains representative of the different ecotypes co-occurring in phosphorus-depleted waters (Synechococcus clades III, WPC1, and sub-cluster 5.3) were shown to display different adaptation strategies to this limitation. In contrast, we found few genes potentially involved in adaptation to temperature when comparing cold and warm thermotypes. Indeed, comparison of core protein sequences highlighted variants specific to cold thermotypes, notably involved in carotenoid biosynthesis and the oxidative stress response, revealing that long-term adaptation to thermal niches relies on amino acid substitutions rather than on gene content variation. Altogether, this study not only deciphers the respective roles of gene gains/losses and sequence variation but also uncovers numerous gene candidates likely involved in niche partitioning of two key members of the marine phytoplankton

    Assessment of inflammatory resilience in healthy subjects using dietary lipid and glucose challenges

    Get PDF
    Background Resilience or the ability of our body to cope with daily-life challenges has been proposed as a new definition of health, with restoration of homeostasis as target resultant of various physiological stress responses. Challenge models may thus be a sensitive measure to study the body’s health. The objective of this study was to select a dietary challenge model for the assessment of inflammatory resilience. Meals are a challenge to metabolic homeostasis and are suggested to affect inflammatory pathways, yet data in literature are limited and inconsistent. Method The kinetic responses of three different dietary challenges and a water control challenge were assessed on various metabolic and inflammatory markers in 14 healthy males and females using a full cross-over study design. The dietary challenges included glucose (75 g glucose in 300 ml water), lipids (200 ml whipping cream) and a mix of glucose and lipids (same amounts as above), respectively. Blood samples were collected at baseline and at 0.5, 1, 2, 4, 6, 8 and 10 h after consumption of the treatment products. Inflammation (IFN¿, IL-1ß, IL-6, IL-8, IL-10, IL-12p70, TNF-a CRP, ICAM-1, VCAM-1, SAA, E-selectin, P-selectin, thrombomodulin, leukocytes, neutrophils, lymphocytes) and clinical (e.g. glucose, insulin, triglycerides) markers as well as gene expression in blood cells and plasma oxylipin profiles were measured. Results All three dietary challenges induced changes related to metabolic control such as increases in glucose and insulin after the glucose challenge and increases in triglycerides after the lipid challenge. In addition, differences between the challenges were observed for precursor oxylipins and some downstream metabolites including DiHETrE’s and HODE’s. However, none of the dietary challenges induced an acute inflammatory response, except for a modest increase in circulating leukocyte numbers after the glucose and mix challenges. Furthermore, subtle, yet statistically significant increases in vascular inflammatory markers (sICAM-1 and sVCAM-1) were found after the mix challenge, when compared to the water control challenge. Conclusions This study shows that dietary glucose and lipid challenges did not induce a strong acute inflammatory response in healthy subjects, as quantified by an accurate and broad panel of parameters
    corecore