577 research outputs found
Classification-relevant Importance Measures for the West German Business Cycle
When analyzing business cycle data, one observes that the relevant predictor variables are often highly correlated. This paper presents a method to obtain measures of importance for the classification of data in which such multicollinearity is present. In systems with highly correlated variables it is interesting to know what changes are inflicted when a certain predictor is changed by one unit and all other predictors according to their correlation to the first instead of a ceteris paribus analysis. The approach described in this paper uses directional derivatives to obtain such importance measures. It is shown how the interesting directions can be estimated and different evaluation strategies for characteristics of classification models are presented. The method is then applied to linear discriminant analysis and multinomial logit for the classification of west German business cycle phases. --
Bayesian networks to explain the effect of label information on product perception
Interdisciplinary approaches in food research require new methods in data analysis that are able to deal with complexity and facilitate the communication among model users. Four parallel full factorial within-subject designs were performed to examine the relative contribution to consumer product evaluation of intrinsic product properties and information given on packaging. Detailed experimental designs and results obtained from analyses of variance were published [1]. The data was analyzed again with the machine learning modelling technique Bayesian networks. The objective of the current paper is to explain basic features of this technique and its advantages over the standard statistical approach regarding handling of complexity and communication of results. With analysis of variance, visualization and interpretation of main effects and interactions effects becomes difficult in complex systems. The Bayesian network model offers the possibility to formally incorporate (domain) experts knowledge. By combining empirical data with the pre-defined network structure, new relationships can be learned, thus generating an update of current knowledge. Probabilistic inference in Bayesian networks allows instant and global use of the model; its graphical representation makes it easy to visualize and communicate the results. Making use of the most of data from one single experiment, as well as combining data of independent experiments makes Bayesian networks for analysing these and similarly complex and rich data set
Classification-relevant Importance Measures for the West German Business Cycle
When analyzing business cycle data, one observes that the relevant predictor variables are often
highly correlated. This paper presents a method to obtain measures of importance for the classification of data in which such multicollinearity is present. In systems with highly correlated variables it is interesting to know what changes are inflicted when a certain predictor is changed by one unit and all other predictors according to their correlation to the first instead of a ceteris paribus analysis. The approach described in this paper uses directional
derivatives to obtain such importance measures. It is shown how the interesting directions can be estimated and different evaluation strategies for characteristics of classification models are presented. The method is then applied to linear discriminant analysis and multinomial logit for the classification of west German business cycle phases
Univariate Characterization of the German Business Cycle 1955-1994
We present a descriptive analysis of stylized facts for the German business cycle. We demonstrate that simple ad-hoc instructions for identifying univariate rules characterizing the German business cycle 1955-1994 lead to an error rate comparable to standard multivariate methods
Diel rhythmicity in amino acid uptake by Prochlorococcus
The marine cyanobacterium Prochlorococcus, the most abundant phototrophic organism on Earth, numerically dominates the phytoplankton in nitrogen (N)-depleted oceanic gyres. Alongside inorganic N sources such as nitrite and ammonium, natural populations of this genus also acquire organic N, specifically amino acids. Here, we investigated using isotopic tracer and flow cytometric cell sorting techniques whether amino acid uptake by Prochlorococcus is subject to a diel rhythmicity, and if so, whether this was linked to a specific cell cycle stage. We observed, in contrast to diurnally similar methionine uptake rates by Synechococcus cells, obvious diurnal rhythms in methionine uptake by Prochlorococcus cells in the tropical Atlantic. These rhythms were confirmed using reproducible cyclostat experiments with a light synchronised axenic Prochlorococcus (PCC9511 strain) culture and 35S-methionine and 3H-leucine tracers. Cells acquired the tracers at lower rates around dawn and higher rates around dusk despite >104 times higher concentration of ammonium in the medium, presumably because amino acids can be directly incorporated into protein. Leucine uptake rates by cells in the S+G2 cell cycle stage were consistently 2.2 times higher than those of cells at the G1 stage. Furthermore, S+G2 cells up-regulated amino acid uptake 3.5 times from dawn to dusk to boost protein synthesis prior to cell division. Because Prochlorococcus populations can account from 13% at midday, and up to 42% at dusk, of total microbial uptake of methionine and probably of other amino acids in N-depleted oceanic waters, this genus exerts diurnally variable, strong competitive pressure on other bacterioplankton populations
Outliers and Influence Points in German Business Cycles
In this paper, we examine the German business cycle (from 1955 to 1994) in order to identify univariate and multivariate outliers as well as influence points corresponding to Linear Discriminant Analysis. The locations of the corresponding observations are compared and economically interpreted
Prediction of Notes from Vocal Time Series Produced by Singing Voice
Aiming at optimal prediction of the correct note corresponding to a vocal time series we trained a classification algorithm on the basis of parts of interpretations of Tochter Zion (Händel) and tested the algorithm on the remaining parts. As classification algorithm we use a radial basis function support vector machine together with a “Hidden Markov” method as a dynamisation mechanism and some smoothing for categorical data. With this we were able to obtain a minimum of 5% average classification error and a maximum of 26% on data from an experiment with 16 singers
Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study
Background
Marine Synechococcus owe their specific vivid color (ranging from blue-green to orange) to their large extrinsic antenna complexes called phycobilisomes, comprising a central allophycocyanin core and rods of variable phycobiliprotein composition. Three major pigment types can be defined depending on the major phycobiliprotein found in the rods (phycocyanin, phycoerythrin I or phycoerythrin II). Among strains containing both phycoerythrins I and II, four subtypes can be distinguished based on the ratio of the two chromophores bound to these phycobiliproteins. Genomes of eleven marine Synechococcus strains recently became available with one to four strains per pigment type or subtype, allowing an unprecedented comparative genomics study of genes involved in phycobilisome metabolism.
Results
By carefully comparing the Synechococcus genomes, we have retrieved candidate genes potentially required for the synthesis of phycobiliproteins in each pigment type. This includes linker polypeptides, phycobilin lyases and a number of novel genes of uncharacterized function. Interestingly, strains belonging to a given pigment type have similar phycobilisome gene complements and organization, independent of the core genome phylogeny (as assessed using concatenated ribosomal proteins). While phylogenetic trees based on concatenated allophycocyanin protein sequences are congruent with the latter, those based on phycocyanin and phycoerythrin notably differ and match the Synechococcus pigment types.
Conclusion
We conclude that the phycobilisome core has likely evolved together with the core genome, while rods must have evolved independently, possibly by lateral transfer of phycobilisome rod genes or gene clusters between Synechococcus strains, either via viruses or by natural transformation, allowing rapid adaptation to a variety of light niches
Synechococcus in the Atlantic Gateway to the Arctic Ocean
Increasing temperatures, with pronounced effects at high latitudes, have raised questions about potential changes in species composition, as well as possible increased importance of small-celled phytoplankton in marine systems. In this study, we mapped out one of the smallest and globally most widespread primary producers, the picocyanobacterium Synechococcus, within the Atlantic inflow to the Arctic Ocean. In contrast to the general understanding that Synechococcus is almost absent in polar oceans due to low temperatures, we encountered high abundances (up to 21,000 cells mL-1) at 79 °N, and documented their presence as far north as 82.5 °N. Covering an annual cycle in 2014, we found that during autumn and winter, Synechococcus was often more abundant than picoeukaryotes, which usually dominate the picophytoplankton communities in the Arctic. Synechococcus community composition shifted from a quite high genetic diversity during the spring bloom to a clear dominance of two specific operational taxonomic units (OTUs) in autumn and winter. We observed abundances higher than 1,000 cells mL-1 in water colder than 2 °C at seven distinct stations and size-fractionation experiments demonstrated a net growth of Synechococcus at 2 °C in the absence of nano-sized grazers at certain periods of the year. Phylogenetic analysis of petB sequences demonstrated that these high latitude Synechococcus group within the previously described cold-adapted clades I and IV, but also contributed to unveil novel genetic diversity, especially within clade I
Picoplankton diversity in the South-East Pacific Ocean from cultures
International audienceIn late 2004, the BIOSOPE cruise sailed between the equatorial influenced waters off Marquesas islands and the nutrient enriched waters of the Chilean upwelling. Along the way, it explored the Southeast Pacific gyre centred around Easter Island, which is probably the most oligotrophic oceanic region on earth. During this cruise, we undertook a vigorous effort to isolate novel photosynthetic picoplanktonic eukaryotes. Two strategies were attempted on board: enrichment of samples with culture medium and sorting of specific populations by flow cytometry based on chlorophyll fluorescence. Over 1900 pre-cultures were started and then further purified by flow cytometry, serial dilution or pipette isolation to yield a total of 212 strains. These strains were characterized morphologically and for more than 50% of them, genetically, through partial sequencing of the 18 S rRNA gene. Among the characterized strains, the largest number are stramenopiles (Heterokontophyta) with a record of 38 strains belonging to the species Pelagomonas calceolata (Pelagophyceae). Strains from the recently described genera Bolidomonas and Florenciella have been re-isolated for the first time since their description. Two other abundant groups are the Chlorophyta, especially Prasinophyceae, and the Haptophyta, especially the genera Phaeocystis and Emiliania. A limited number of heterotrophic flagellates have also been isolated, all of them closely related to known species. Finally over a dozen of unicellular cyanobacteria strains have been obtained, some forming unusual short chains. Overall our strategy was quite successful since it allowed us to isolate a large number of picoplankton strains but failed in two respects. First, apparently very few novel taxa have been obtained. One set of strains is related to Prasinoderma coloniale (Prasinococcales, Prasinophyceae) but their sequences are sufficiently different from the latter to probably belong to a new genus or species. The sequences of two other strains are phylogenetically affiliated to stramenopile environmental sequences, probably corresponding a new algal class. Second, very few strains have been obtained from the very oligotrophic central gyre itself. Future work should probably combine flow cytometry sorting with culture media and cultivation approaches specifically developed for oligotrophic water species
- …
