2,765 research outputs found

    Towards a new generation axion helioscope

    Get PDF
    We study the feasibility of a new generation axion helioscope, the most ambitious and promising detector of solar axions to date. We show that large improvements in magnetic field volume, x-ray focusing optics and detector backgrounds are possible beyond those achieved in the CERN Axion Solar Telescope (CAST). For hadronic models, a sensitivity to the axion-photon coupling of \gagamma\gtrsim {\rm few} \times 10^{-12} GeV1^{-1} is conceivable, 1--1.5 orders of magnitude beyond the CAST sensitivity. If axions also couple to electrons, the Sun produces a larger flux for the same value of the Peccei-Quinn scale, allowing one to probe a broader class of models. Except for the axion dark matter searches, this experiment will be the most sensitive axion search ever, reaching or surpassing the stringent bounds from SN1987A and possibly testing the axion interpretation of anomalous white-dwarf cooling that predicts mam_a of a few meV. Beyond axions, this new instrument will probe entirely unexplored ranges of parameters for a large variety of axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics.Comment: 37 pages, 11 figures, accepted for publication in JCA

    Riding the techwave in an era of change

    Get PDF
    Learn how innovation is finding its way within the healthcare sector and get a grip on the latest technological developments. Based on insights from 77 stakeholders within the Dutch healthcare system, including healthcare professionals, entrepreneurs, researchers, consultants, policy makers, and input from 80 healthcare consumers this book helps you to understand: • the technologies with the highest implementation potential in the healthcare

    Non-culprit MACE-rate in LRP:The influence of optimal medical therapy using DAPT and statins

    Get PDF
    Background/Purpose: The Lipid Rich Plaque (LRP) study demonstrated the association between coronary plaque lipid content and outcomes. In this LRP substudy, we assessed the impact of optimal medical therapy (OMT) on the occurrence of non-culprit major adverse cardiac events (NC-MACE). Advanced intracoronary imaging modalities are able to identify patients with vulnerable coronary lesion morphology associated with future events. Methods/Materials: A total of 1270 patients who underwent cardiac catheterization for suspected coronary artery disease (CAD) with evaluable maxLCBI4mm in non-culprit vessels and known medical therapy after discharge were followed for 2 years. OMT was defined as the use of a statin and dual antiplatelet therapy (DAPT). Results: Among the 1270 patients included in this substudy, 1110 (87.7%) had PCI for an index event, and 1014 (80%) patients received OMT. Estimated cumulative incidence functions of NC-MACE did not differ significantly between patients treated with or without OMT (log-rank p-value = 0.876). In patients labeled high risk (maxLCBI4mm > 400), cumulative incidence function also did not differ between patients treated with vs without OMT (log-rank p-value = 0.19). Conclusions: In the current LRP analysis, we could not identify a beneficial effect of OMT in the reduction of NC-MACE rate, even in patients with high-risk plaques during 24-month follow-up

    Supramolecular copolymers: structure and composition revealed by theoretical modeling

    Get PDF
    Supramolecular copolymers, non-covalent analogues of synthetic copolymers, constitute a new and promising class of polymers. In contrast to their covalent counterparts, the details of their mechanism of formation, as well as the factors determining their composition and length, are still poorly understood. Here, the supramolecular copolymerization between two slightly structurally different benzene-1,3,5-tricarboxamide (BTA) monomers functionalized with either oligodimethylsiloxane (oDMSi) or alkyl side chains is unraveled by combining experimental and theoretical approaches. By applying the “sergeant-and-soldiers” approach using circular dichroism (CD) experiments, we are able to obtain detailed insights into the structure and composition of these supramolecular copolymers. Moreover, we observe an unexpected chiral induction upon mixing two independently CD-silent solutions of the achiral (soldier) and chiral (sergeant) monomers. We find that the subtle differences in the chemical structure of the two monomers impact their homopolymerization mechanism: whereas alkyl-BTAs cooperatively self-assemble, oDMSi-BTAs self-assemble in an isodesmic manner. The effect of these mechanistic differences in the supramolecular copolymerization process is investigated as a function of the composition of the two monomers and explicitly rationalized by mathematical modeling. The results show that, at low fractions of oDMSi-BTA sergeants (25 mol%), the isodesmic assembly of the increasing amounts of sergeant becomes more dominant, and different species start to coexist in the copolymerization process. The analysis of the experimental data with a newly developed theoretical model allows us to quantify the thermodynamic parameters, the distribution of different species, and the compositions and stack lengths of the formed supramolecular copolymers existing at various feed ratios of the two monomers.This work was financially supported by The Netherlands Organization for Scientific Research (NWO-TOP PUNT Grant 10018944) and the Dutch Ministry of Education, Culture and Science (Gravity Program 024.001.035)

    The International Axion Observatory (IAXO)

    Get PDF
    The International Axion Observatory (IAXO) is a new generation axion helioscope aiming at a sensitivity to the axion-photon coupling of a few 1012^{12} GeV1^{-1}, i.e. 1 - 1.5 orders of magnitude beyond the one currently achieved by CAST. The project relies on improvements in magnetic field volume together with extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested in CAST. Additional physics cases of IAXO could include the detection of electron-coupled axions invoked to solve the white dwarfs anomaly, relic axions, and a large variety of more generic axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics. This contribution is a summary of our paper [1] to which we refer for further details.Comment: 4 pages, 2 figures. To appear in the proceedings of the 7th Patras Workshop on Axions, WIMPs and WISPs, Mykonos, Greece, 201

    Imaging the asymmetric dust shell around CI Cam with long baseline optical interferometry

    Get PDF
    We present the first high angular resolution observation of the B[e] star/X-ray transient object CI Cam, performed with the two-telescope Infrared Optical Telescope Array (IOTA), its upgraded three-telescope version (IOTA3T) and the Palomar Testbed Interferometer (PTI). Visibilities and closure phases were obtained using the IONIC-3 integrated optics beam combiner. CI Cam was observed in the near-infrared H and K spectral bands, wavelengths well suited to measure the size and study the geometry of the hot dust surrounding CI Cam. The analysis of the visibility data over an 8 year period from soon after the 1998 outburst to 2006 shows that the dust visibility has not changed over the years. The visibility data shows that CI Cam is elongated which confirms the disc-shape of the circumstellar environment and totally rules out the hypothesis of a spherical dust shell. Closure phase measurements show direct evidence of asymmetries in the circumstellar environment of CI Cam and we conclude that the dust surrounding CI Cam lies in an inhomogeneous disc seen at an angle. The near-infrared dust emission appears as an elliptical skewed Gaussian ring with a major axis a = 7.58 +/- 0.24 mas, an axis ratio r = 0.39 +/- 0.03 and a position angle theta = 35 +/- 2 deg.Comment: 9 pages, 5 figures, accepted MNRA

    Moulded photoplastic probes for near-field optical applications

    Get PDF
    The inexpensive fabrication of high-quality probes for nearfield optical applications is still unsolved although several methods for integrated fabrication have been proposed in the past. A further drawback is the intensity loss of the transmitted light in the 'cut-off' region near the aperture in tapered optical fibres typically used as near-field probes. As a remedy for these limitations we suggest here a new waferscale semibatch microfabrication process for transparent photoplastic probes. The process starts with the fabrication of a pyramidal mould in silicon by using the anisotropic etchant potassium hydroxide. This results in an inverted pyramid limited by silicon crystal planes having an angle of ~54°. The surface including the mould is covered by a ,1.5 nm thick organic monolayer of dodecyltrichlorosilane (DTS) and a 100-nm thick evaporated aluminium film. Two layers of photoplastic material are then spin-coated (thereby conformal filling the mould) and structured by lithography to form a cup for the optical fibre microassembly. The photoplastic probes are finally lifted off mechanically from the mould with the aluminium coating. Focused ion beam milling has been used to subsequently form apertures with diameters in the order of 80 nm. The advantage of our method is that the light to the aperture area can be directly coupled into the probe by using existing fibre-based NSOM set-ups, without the need for far-field alignment, which is typically necessary for cantilevered probes. We have evidence that the aluminium layer is considerably smoother compared to the 'grainy' layers typically evaporated on free-standing probes. The optical throughput efficiency was measured to be about 10^-4. This new NSOM probe was directly bonded to a tuning fork sensor for the shear force control and the topography of a polymer sample was successfully obtained

    Variability as a Predictor for the Hard-to-soft State Transition in GX 339−4

    Get PDF
    During the outbursts of black hole X-ray binaries (BHXRBs), their accretion flows transition through several states. The source luminosity rises in the hard state, dominated by nonthermal emission, before transitioning to the blackbody-dominated soft state. As the luminosity decreases, the source transitions back into the hard state and fades to quiescence. This picture does not always hold, as ≈40% of the outbursts never leave the hard state. Identifying the physics that govern state transitions remains one of the outstanding open questions in black hole astrophysics. In this paper we present an analysis of archival RXTE data of multiple outbursts of GX 339−4. We compare the properties of the X-ray variability and time-averaged energy spectrum and demonstrate that the variability (quantified by the power spectral hue) systematically evolves ≈10–40 days ahead of the canonical state transition (quantified by a change in spectral hardness); no such evolution is found in hard-state-only outbursts. This indicates that the X-ray variability can be used to predict if and when the hard-to-soft state transition will occur. Finally, we find a similar behavior in 10 outbursts of four additional BHXRBs with more sparse observational coverage. Based on these findings, we suggest that state transitions in BHXRBs might be driven by a change in the turbulence in the outer regions of the disk, leading to a dramatic change in variability. This change is only seen in the spectrum days to weeks later, as the fluctuations propagate inwards toward the corona

    Molecular diagnostics of intestinal parasites in returning travellers

    Get PDF
    A new diagnostic strategy was assessed for the routine diagnosis of intestinal parasites in returning travellers and immigrants. Over a period of 13 months, unpreserved stool samples, patient characteristics and clinical data were collected from those attending a travel clinic. Stool samples were analysed on a daily basis by microscopic examination and antigen detection (i.e. care as usual), and compared with a weekly performed multiplex real-time polymerase chain reaction (PCR) analysis on Entamoeba histolytica, Giardia lamblia, Cryptosporidium and Strongyloides stercoralis. Microscopy and antigen assays of 2,591 stool samples showed E. histolytica, G. lamblia, Cryptosporidium and S. stercoralis in 0.3, 4.7, 0.5 and 0.1% of the cases, respectively. These detection rates were increased using real-time PCR to 0.5, 6.0, 1.3 and 0.8%, respectively. The prevalence of ten additional pathogenic parasite species identified with microscopy was, at most, 0.5%. A pre-selective decision tree based on travel history or gastro-intestinal complaints could not be made. With increased detection rates at a lower workload and the potential to extend with additional parasite targets combined with fully automated DNA isolation, molecular high-throughput screening could eventually replace microscopy to a large extent
    corecore