1,281 research outputs found

    Non-linear response of single-molecule magnets: field-tuned quantum-to-classical crossovers

    Get PDF
    Quantum nanomagnets can show a field dependence of the relaxation time very different from their classical counterparts, due to resonant tunneling via excited states (near the anisotropy barrier top). The relaxation time then shows minima at the resonant fields H_{n}=n D at which the levels at both sides of the barrier become degenerate (D is the anisotropy constant). We showed that in Mn12, near zero field, this yields a contribution to the nonlinear susceptibility that makes it qualitatively different from the classical curves [Phys. Rev. B 72, 224433 (2005)]. Here we extend the experimental study to finite dc fields showing how the bias can trigger the system to display those quantum nonlinear responses, near the resonant fields, while recovering an classical-like behaviour for fields between them. The analysis of the experiments is done with heuristic expressions derived from simple balance equations and calculations with a Pauli-type quantum master equation.Comment: 4 pages, 3 figures. Submitted to Phys. Rev. B, brief report

    Run-and-tumble motion in a harmonic potential: Field theory and entropy production

    Get PDF
    Abstract Run-and-tumble (RnT) motion is an example of active motility where particles move at constant speed and change direction at random times. In this work we study RnT motion with diffusion in a harmonic potential in one dimension via a path integral approach. We derive a Doi-Peliti field theory and use it to calculate the entropy production and other observables in closed form. All our results are exact.This work was funded in part by the European Research Council under the EU’s Horizon 2020 Programme, Grant No. 740269

    Imaging the asymmetric dust shell around CI Cam with long baseline optical interferometry

    Get PDF
    We present the first high angular resolution observation of the B[e] star/X-ray transient object CI Cam, performed with the two-telescope Infrared Optical Telescope Array (IOTA), its upgraded three-telescope version (IOTA3T) and the Palomar Testbed Interferometer (PTI). Visibilities and closure phases were obtained using the IONIC-3 integrated optics beam combiner. CI Cam was observed in the near-infrared H and K spectral bands, wavelengths well suited to measure the size and study the geometry of the hot dust surrounding CI Cam. The analysis of the visibility data over an 8 year period from soon after the 1998 outburst to 2006 shows that the dust visibility has not changed over the years. The visibility data shows that CI Cam is elongated which confirms the disc-shape of the circumstellar environment and totally rules out the hypothesis of a spherical dust shell. Closure phase measurements show direct evidence of asymmetries in the circumstellar environment of CI Cam and we conclude that the dust surrounding CI Cam lies in an inhomogeneous disc seen at an angle. The near-infrared dust emission appears as an elliptical skewed Gaussian ring with a major axis a = 7.58 +/- 0.24 mas, an axis ratio r = 0.39 +/- 0.03 and a position angle theta = 35 +/- 2 deg.Comment: 9 pages, 5 figures, accepted MNRA

    Probing the close environment of young stellar objects with interferometry

    Full text link
    The study of Young Stellar Objects (YSOs) is one of the most exciting topics that can be undertaken by long baseline optical interferometry. The magnitudes of these objects are at the edge of capabilities of current optical interferometers, limiting the studies to a few dozen, but are well within the capability of coming large aperture interferometers like the VLT Interferometer, the Keck Interferometer, the Large Binocular Telescope or 'OHANA. The milli-arcsecond spatial resolution reached by interferometry probes the very close environment of young stars, down to a tenth of an astronomical unit. In this paper, I review the different aspects of star formation that can be tackled by interferometry: circumstellar disks, multiplicity, jets. I present recent observations performed with operational infrared interferometers, IOTA, PTI and ISI, and I show why in the next future one will extend these studies with large aperture interferometers.Comment: Review to be published in JENAM'2002 proceedings "The Very Large Telescope Interferometer Challenges for the future

    Chromatin jets define the properties of cohesin-driven in vivo loop extrusion

    Get PDF
    Complex genomes show intricate organization in three-dimensional (3D) nuclear space. Current models posit that cohesin extrudes loops to form self-interacting domains delimited by the DNA binding protein CTCF. Here, we describe and quantitatively characterize cohesin-propelled, jet-like chromatin contacts as landmarks of loop extrusion in quiescent mammalian lymphocytes. Experimental observations and polymer simulations indicate that narrow origins of loop extrusion favor jet formation. Unless constrained by CTCF, jets propagate symmetrically for 1-2 Mb, providing an estimate for the range of in vivo loop extrusion. Asymmetric CTCF binding deflects the angle of jet propagation as experimental evidence that cohesin-mediated loop extrusion can switch from bi- to unidirectional and is controlled independently in both directions. These data offer new insights into the physiological behavior of in vivo cohesin-mediated loop extrusion and further our understanding of the principles that underlie genome organization

    FU Orionis disk outburst: evidence for a gravitational instability scenario triggered in a magnetically dead zone

    Get PDF
    Context: FUors outbursts are a crucial stage of accretion in young stars. However a complete mechanism at the origin of the outburst still remains missing. Aims: We aim at constraining the instability mechanism in FU Orionis star itself, by directly probing the size and the evolution in time of the outburst region with near-infrared interferometry, and to confront it to physical models of this region. Methods: FU Orionis has been a regular target of near-infrared interferometry. In this paper, we analyze more than 20 years of interferometric observations to perform a temporal monitoring of the region of the outburst, and compare it to the spatial structure deduced from 1D MHD simulations. Results: We measure from the interferometric observations that the size variation of the outburst region is compatible with a constant or slightly decreasing size over time in the H and K band. The temporal variation and the mean sizes are consistently reproduced by our 1D MHD simulations. We find that the most compatible scenario is a model of an outburst occurring in a magnetically layered disk, where a Magneto-Rotational Instability (MRI) is triggered by a Gravitational Instability (GI) at the outer edge of a dead-zone. The scenario of a pure Thermal Instability (TI) fails to reproduce our interferometric sizes since it can only be sustained in a very compact zone of the disk <0.1 AU. The scenario of MRI-GI could be compatible with an external perturbation enhancing the GI, such as tidal interactions with a stellar companion, or a planet at the outer edge of the dead-zone. Conclusions: The layered disk model driven by MRI turbulence is favored to interpret the spatial structure and temporal evolution of FU Orionis outburst region. Understanding this phase gives a crucial link between the early phase of disk evolution and the process of planet formation in the first inner AUs.Comment: Accepted for publication in A&

    Epidemiology and molecular characterization of Carnivore protoparvovirus-1 infection in the wild felid Leopardus guigna in Chile

    Get PDF
    Landscape anthropization has been identified as one of the main drivers of pathogen emergence worldwide, facilitating pathogen spillover between domestic species and wildlife. The present study investigated Carnivore protoparvovirus-1 infection using molecular methods in 98 free-ranging wild guignas (Leopardus guigna) and 262 co-occurring owned, free-roaming rural domestic cats. We also assessed landscape anthropization variables as potential drivers of infection. Protoparvovirus DNA was detected in guignas across their entire distribution range, with observed prevalence of 13.3% (real-time PCR) and 9% (conventional PCR) in guignas, and 6.1% (conventional PCR) in cats. Prevalence in guigna did not vary depending on age, sex, study area or landscape variables. Prevalence was higher in juvenile cats (16.7%) than in adults (4.4%). Molecular characterization of the virus by amplification and sequencing of almost the entire vp2 gene (1, 746 bp) from one guigna and five domestic cats was achieved, showing genetic similarities to canine parvovirus 2c (CPV-2c) (one guigna and one cat), feline panleukopenia virus (FPV) (one cat), CPV-2 (no subtype identified) (two cats), CPV-2a (one cat). The CVP-2c-like sequence found in a guigna clustered together with domestic cat and dog CPV-2c sequences from South America, suggesting possible spillover from a domestic to a wild species as the origin of infection in guigna. No clinical signs of disease were found in PCR-positive animals except for a CPV-2c-infected guigna, which had haemorrhagic diarrhoea and died a few days after arrival at a wildlife rescue centre. Our findings reveal widespread presence of Carnivore protoparvovirus-1 across the guigna distribution in Chile and suggest that virus transmission potentially occurs from domestic to wild carnivores, causing severe disease and death in susceptible wild guignas

    Keck Interferometer Nuller Data Reduction and On-Sky Performance

    Get PDF
    We describe the Keck Interferometer nuller theory of operation, data reduction, and on-sky performance, particularly as it applies to the nuller exozodiacal dust key science program that was carried out between 2008 February and 2009 January. We review the nuller implementation, including the detailed phasor processing involved in implementing the null-peak mode used for science data and the sequencing used for science observing. We then describe the Level 1 reduction to convert the instrument telemetry streams to raw null leakages, and the Level 2 reduction to provide calibrated null leakages. The Level 1 reduction uses conservative, primarily linear processing, implemented consistently for science and calibrator stars. The Level 2 processing is more flexible, and uses diameters for the calibrator stars measured contemporaneously with the interferometer’s K-band cophasing system in order to provide the requisite accuracy. Using the key science data set of 462 total scans, we assess the instrument performance for sensitivity and systematic error. At 2.0 Jy we achieve a photometrically-limited null leakage uncertainty of 0.25% rms per 10 minutes of integration time in our broadband channel. From analysis of the Level 2 reductions, we estimate a systematic noise floor for bright stars of ~0.2% rms null leakage uncertainty per observing cluster in the broadband channel. A similar analysis is performed for the narrowband channels. We also provide additional information needed for science reduction, including details on the instrument beam pattern and the basic astrophysical response of the system, and references to the data reduction and modeling tools

    Milliarcsecond N-Band Observations of the Nova RS Ophiuchi: First Science with the Keck Interferometer Nuller

    Get PDF
    We report observations of the nova RS Ophiuchi (RS Oph) using the Keck Interferometer Nuller (KIN), approximately 3.8 days following the most recent outburst that occurred on 2006 February 12. These observations represent the first scientific results from the KIN, which operates in N-band from 8 to 12.5 microns in a nulling mode. By fitting the unique KIN data, we have obtained an angular size of the mid-infrared continuum of 6.2, 4.0, or 5.4 mas for a disk profile, gaussian profile (FWHM), and shell profile respectively. The data show evidence of enhanced neutral atomic hydrogen emission and atomic metals including silicon located in the inner spatial regime near the white dwarf (WD) relative to the outer regime. There are also nebular emission lines and evidence of hot silicate dust in the outer spatial region, centered at ! 17 AU from the WD, that are not found in the inner regime. Our evidence suggests that these features have been excited by the nova flash in the outer spatial regime before the blast wave reached these regions. These identifications support a model in which the dust appears to be present between outbursts and is not created during the outburst event. We further discuss the present results in terms of a unifying model of the system that includes an increase in density in the plane of the orbit of the two stars created by a spiral shock wave caused by the motion of the stars through the cool wind of the red giant star. These data show the power and potential of the nulling technique which has been developed for the detection of Earth-like planets around nearby stars for the Terrestrial Planet Finder Mission and Darwin missions.Comment: 41 pages, 10 figure
    corecore