7,769 research outputs found

    Dry rainfed conditions are key drivers of the effect of conservation tillage and a nitrification inhibitor on N fate and N2O emissions: A field 15N tracing study

    Get PDF
    The sustainability of rainfed crops under semiarid conditions is threatened by low plant nitrogen (N) recovery as well as the potential loss of reactive N to the environment. A field 15N tracing experiment on barley (Hordeum vulgare L.) under rainfed conditions was carried out to study how different tillage management practices and the use of the nitrification inhibitor DMPSA affected the fate of N. The experiment consisted of a factorial combination of tillage (i.e., no tillage, NT, and conventional tillage, T) and fertilizer treatments (unfertilized control and ammonium nitrate, AN, with or without DMPSA). Single-labelled ammonium nitrate (15NH4NO3, 15AN, or NH415NO3, A15N) was applied at top-dressing to microplots at a rate of 80 kg N ha−1. Our results show out that DMPSA modulates the nitrification process from both fertilizer-N and endogenous soil-N (which was the main contributor to plant N uptake and N2O emissions), affecting soil residual N at the end of the cropping period (i.e., higher topsoil retention of 15AN in DMPSA-amended plots). Generally, cumulative N2O emissions from fertilizer were derived from 15AN rather than from A15N, thus confirming the site-specific choice of the source of synthetic N as an effective N2O mitigation strategy. Two months after harvest, a rewetting event produced a remarkable N2O emission peak that drove total cumulative N2O emissions and was also mainly derived from endogenous N. These results suggest that dry seasons could decrease N2O losses after fertilization while causing critical peaks after rewetting, thus potentially limiting the effectiveness of mitigation strategies. The average plant N recovery from the synthetic fertilizer was 22.6%, while the use of DMPSA combined with NT enhanced plant N uptake from endogenous soil-N. This could be a result of the improved crop development and plant N acquisition under NT, consistent with the decrease of soil N retention for A15N in the deeper layer at the end of the experiment in the nontilled plots. This study contributes to the mechanistic understanding of the effect of nitrification inhibitors and tillage on N2O emissions, soil N dynamics and N plant recovery, revealing relevant effects of both management strategies and a critical role of endogenous soil-N under dry rainfed conditions. It can be concluded that, under the conditions of our study, combining DMPSA with NT could help to improve plant N recovery, thus resulting in positive impacts on reactive N loss and climate change mitigation and adaptation

    Metodologia de amostragem para avaliação da qualidade das pastagens nativas consumidas por bovinos no Pantanal.

    Get PDF
    Interação bovino x planta do Pantanal; Estratégia de forrageamento; Comportamento de pastejo; Teste de metodologia; Descrição da metodologia proposta para a avaliação do valor nutritivo e composição botânica das pastagens nativas consumidas por bovinos no Pantanal.bitstream/item/37729/1/DOC31.pd

    A novel AhR ligand, 2AI, protects the retina from environmental stress.

    Get PDF
    Various retinal degenerative diseases including dry and neovascular age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy are associated with the degeneration of the retinal pigmented epithelial (RPE) layer of the retina. This consequently results in the death of rod and cone photoreceptors that they support, structurally and functionally leading to legal or complete blindness. Therefore, developing therapeutic strategies to preserve cellular homeostasis in the RPE would be a favorable asset in the clinic. The aryl hydrocarbon receptor (AhR) is a conserved, environmental ligand-dependent, per ARNT-sim (PAS) domain containing bHLH transcription factor that mediates adaptive response to stress via its downstream transcriptional targets. Using in silico, in vitro and in vivo assays, we identified 2,2'-aminophenyl indole (2AI) as a potent synthetic ligand of AhR that protects RPE cells in vitro from lipid peroxidation cytotoxicity mediated by 4-hydroxynonenal (4HNE) as well as the retina in vivo from light-damage. Additionally, metabolic characterization of this molecule by LC-MS suggests that 2AI alters the lipid metabolism of RPE cells, enhancing the intracellular levels of palmitoleic acid. Finally, we show that, as a downstream effector of 2AI-mediated AhR activation, palmitoleic acid protects RPE cells from 4HNE-mediated stress, and light mediated retinal degeneration in mice

    A Computer Application to Predict Adverse Events in the Short-Term Evolution of Patients With Exacerbation of Chronic Obstructive Pulmonary Disease

    Get PDF
    Background: Chronic obstructive pulmonary disease (COPD) is a common chronic disease. Exacerbations of COPD (eCOPD) contribute to the worsening of the disease and the patient’s evolution. There are some clinical prediction rules that may help to stratify patients with eCOPD by their risk of poor evolution or adverse events. The translation of these clinical prediction rules into computer applications would allow their implementation in clinical practice. Objective: The goal of this study was to create a computer application to predict various outcomes related to adverse events of short-term evolution in eCOPD patients attending an emergency department (ED) based on valid and reliable clinical prediction rules. Methods: A computer application, Prediction of Evolution of patients with eCOPD (PrEveCOPD), was created to predict 2 outcomes related to adverse events: (1) mortality during hospital admission or within a week after an ED visit and (2) admission to an intensive care unit (ICU) or an intermediate respiratory care unit (IRCU) during the eCOPD episode. The algorithms included in the computer tool were based on clinical prediction rules previously developed and validated within the Investigación en Resultados y Servicios de Salud COPD study. The app was developed for Windows and Android systems, using Visual Studio 2008 and Eclipse, respectively. Results: The PrEveCOPD computer application implements the prediction models previously developed and validated for 2 relevant adverse events in the short-term evolution of patients with eCOPD. The application runs under Windows and Android systems and it can be used locally or remotely as a Web application. Full description of the clinical prediction rules as well as the original references is included on the screen. Input of the predictive variables is controlled for out-of-range and missing values. Language can be switched between English and Spanish. The application is available for downloading and installing on a computer, as a mobile app, or to be used remotely via internet. Conclusions: The PrEveCOPD app shows how clinical prediction rules can be summarized into simple and easy to use tools, which allow for the estimation of the risk of short-term mortality and ICU or IRCU admission for patients with eCOPD. The app can be used on any computer device, including mobile phones or tablets, and it can guide the clinicians to a valid stratification of patients attending the ED with eCOPD.Fondo de Investigación Sanitaria (PI 06\1010, PI06\1017, PI06\714, PI06\0326, PI06\0664) Departamento de Salud del Gobierno Vasco (2012111008) Departamento de Educación, Política Lingüística y Cultura del Gobierno Vasco (IT620-13) Ministerio de Economía y Competitividad del Gobierno Español and FEDER (MTM2013-40941-P and MTM2016-74931-P) the Research Committee of the Hospital Galdakao the thematic networks -REDISSEC (Red de Investigación en Servicios de Salud en Enfermedades Crónicas) - of the Instituto de Salud Carlos III

    A facile way to produce epoxy nanocomposites having excellent thermal conductivity with low contents of reduced graphene oxide

    Get PDF
    A well-dispersed phase of exfoliated graphene oxide (GO) nanosheets was initially prepared in water. This was concentrated by centrifugation and was mixed with a liquid epoxy resin. The remaining water was removed by evaporation, leaving a GO dispersion in epoxy resin. A stoichiometric amount of an anhydride curing agent was added to this epoxy-resin mixture containing the GO nanosheets, which was then cured at 90 C for 1 h followed by 160 C for 2 h. A second thermal treatment step of 200 C for 30 min was then undertaken to reduce further the GO in situ in the epoxy nanocomposite. An examination of the morphology of such nanocomposites containing reduced graphene oxide (rGO) revealed that a very good dispersion of rGO was achieved throughout the epoxy polymer. Various thermal and mechanical properties of the epoxy nanocomposites were measured, and the most noteworthy finding was a remarkable increase in the thermal conductivity when relatively very low contents of rGO were present. For example, a value of 0.25 W/mK was measured at 30 C for the nanocomposite with merely 0.06 weight percentage (wt%) of rGO present, which represents an increase of *40% compared with that of the unmodified epoxy polymer. This value represents one of the largest increases in the thermal conductivity per wt% of added rGO yet reported. These observations have been attributed to the excellent dispersion of rGO achieved in these nanocomposites made via this facile production method. The present results show that it is now possible to tune the properties of an epoxy polymer with a simple and viable method of GO addition. A

    A decision tree to assess short-term mortality after an emergency department visit for an exacerbation of COPD: A cohort study

    Get PDF
    Background: Creating an easy-to-use instrument to identify predictors of short-term (30/60-day) mortality after an exacerbation of chronic obstructive pulmonary disease (eCOPD) could help clinicians choose specific measures of medical care to decrease mortality in these patients. The objective of this study was to develop and validate a classification and regression tree (CART) to predict short term mortality among patients evaluated in an emergency department (ED) for an eCOPD. Methods: We conducted a prospective cohort study including participants from 16 hospitals in Spain. COPD patients with an exacerbation attending the emergency department (ED) of any of the hospitals between June 2008 and September 2010 were recruited. Patients were randomly divided into derivation (50 %) and validation samples (50 %). A CART based on a recursive partitioning algorithm was created in the derivation sample and applied to the validation sample. Results: Two thousand four hundred eighty-seven patients, 1252 patients in the derivation sample and 1235 in the validation sample, were enrolled in the study. Based on the results of the univariate analysis, five variables (baseline dyspnea, cardiac disease, the presence of paradoxical breathing or use of accessory inspiratory muscles, age, and Glasgow Coma Scale score) were used to build the CART. Mortality rates 30 days after discharge ranged from 0 % to 55 % in the five CART classes. The lowest mortality rate was for the branch composed of low baseline dyspnea and lack of cardiac disease. The highest mortality rate was in the branch with the highest baseline dyspnea level, use of accessory inspiratory muscles or paradoxical breathing upon ED arrival, and Glasgow score <15. The area under the receiver-operating curve (AUC) in the derivation sample was 0.835 (95 % CI: 0.783, 0.888) and 0.794 (95 % CI: 0.723, 0.865) in the validation sample. CART was improved to predict 60-days mortality risk by adding the Charlson Comorbidity Index, reaching an AUC in the derivation sample of 0.817 (95 % CI: 0.776, 0.859) and 0.770 (95 % CI: 0.716, 0.823) in the validation sample. Conclusions: We identified several easy-to-determine variables that allow clinicians to classify eCOPD patients by short term mortality risk, which can provide useful information for establishing appropriate clinical care. Trial registration: NCT02434536

    Mathematical Analysis of Inclusion Removal from Liquid Steel by Gas Bubbling in a Casting Tundish

    Get PDF
    The mechanism of inclusion removal from liquid steel by gas bubbling and bubble attachment in the tundish is complex due to the great number of variables involved, and it is even more difficult to study because of the turbulent flow conditions. The main objective of this work is to analyze and improve the understanding of the alumina inclusion removal rate by bubble attachment and by gas bubbling fluid dynamics effects. The results show that the inclusion collection probability mainly depends on the attachment mechanism by collision. This parameter was determined by calculating the induction time, which is shorter when the rupture time and the formation time of a stable three phases contact (particle/liquid/gas) are ignored than when it is fully considered, affecting the attachment probability. In addition, to achieve acceptable inclusion removal, a smaller bubble diameter is required, such as 1 mm. This consideration is almost impossible to achieve during tundish operation; a more realistic bubble diameter around 10 mm is employed, resulting in a very inefficient inclusion removal process by bubble attachment. Nevertheless, in a real casting tundish the inclusion removal rate employing argon bubbling is efficient; is mainly due to the fluid flow pattern changes rather than bubble attachment. Consequently, it is imperative to consider the summation of both removal mechanisms to compute a better approximation of this important operation

    Therapeutic efficacy of microtube-embedded chondroitinase ABC in a canine clinical model of spinal cord injury

    Get PDF
    Many hundreds of thousands of people around the world are living with the long-term consequences of spinal cord injury and they need effective new therapies. Laboratory research in experimental animals has identified a large number of potentially translatable interventions but transition to the clinic is not straightforward. Further evidence of efficacy in more clinically-relevant lesions is required to gain sufficient confidence to commence human clinical trials. Of the many therapeutic candidates currently available, intraspinally applied chondroitinase ABC has particularly well documented efficacy in experimental animals. In this study we measured the effects of this intervention in a double-blinded randomized controlled trial in a cohort of dogs with naturally-occurring severe chronic spinal cord injuries that model the condition in humans. First, we collected baseline data on a series of outcomes: forelimb-hindlimb coordination (the prespecified primary outcome measure), skin sensitivity along the back, somatosensory evoked and transcranial magnetic motor evoked potentials and cystometry in 60 dogs with thoracolumbar lesions. Dogs were then randomized 1:1 to receive intraspinal injections of heat-stabilized, lipid microtube-embedded chondroitinase ABC or sham injections consisting of needle puncture of the skin. Outcome data were measured at 1, 3 and 6 months after intervention; skin sensitivity was also measured 24 h after injection (or sham). Forelimb-hindlimb coordination was affected by neither time nor chondroitinase treatment alone but there was a significant interaction between these variables such that coordination between forelimb and hindlimb stepping improved during the 6-month follow-up period in the chondroitinase-treated animals by a mean of 23%, but did not change in controls. Three dogs (10%) in the chondroitinase group also recovered the ability to ambulate without assistance. Sensitivity of the dorsal skin increased at 24 h after intervention in both groups but subsequently decreased to normal levels. Cystometry identified a non-significant improvement of bladder compliance at 1 month in the chondroitinase-injected dogs but this did not persist. There were no overall differences between groups in detection of sensory evoked potentials. Our results strongly support a beneficial effect of intraspinal injection of chondroitinase ABC on spinal cord function in this highly clinically-relevant model of chronic severe spinal cord injury. There was no evidence of long-term adverse effects associated with this intervention. We therefore conclude that this study provides strong evidence in support of initiation of clinical trials of chondroitinase ABC in humans with chronic spinal cord injury

    Primary Angioplasty in a Catastrophic Presentation: Acute Left Main Coronary Total Occlusion—The ATOLMA Registry

    Get PDF
    Objectives. To determine the outcome predictors of in-hospital mortality in acute total occlusion of the left main coronary artery (ATOLMA) patients referred to emergent angioplasty and to describe the clinical presentation and the long-term outcome of these patients.Background. ATOLMA is an uncommon angiographic finding that usually leads to a catastrophic presentation. Limited and inconsistent data have been previously reported regarding true ATOLMA, yet comprehensive knowledge remains scarce.Methods. This is a multicenter retrospective cohort that includes patients presenting with myocardial infarction due to a confirmed ATOLMA who underwent emergency percutaneous coronary intervention (PCI).Results. In the period of the study, 7930 emergent PCI were performed in the five participating centers, and 46 of them had a true ATOLMA (0.58%). At admission, cardiogenic shock was present in 89% of patients, and cardiopulmonary resuscitation was required in 67.4%. All the patients had right dominance. Angiographic success was achieved in 80.4% of the procedures, 13 patients (28.2%) died during the catheterization, and the in-hospital mortality rate was 58.6% (27/46). At one-year and at the final follow-up, 18 patients (39%) were alive, including four cases successfully transplanted. Multivariate analysis showed that postprocedural TIMI flow was the only independent predictor of in-hospital mortality (OR 0.23, (95% CI 0.1-0.36),p<0.001).Conclusions. Our study confirms that the clinical presentation of ATOLMA is catastrophic, presenting a high in-hospital mortality rate; nevertheless, primary angioplasty in this setting is feasible. Postprocedural TIMI flow resulted as the only independent predictor of in-hospital mortality. In-hospital survivors presented an encouraging outcome. ATOLMA and left dominance could be incompatible with life
    • …
    corecore