12,056 research outputs found

    Probing Trilinear Gauge Boson Interactions via Single Electroweak Gauge Boson Production at the LHC

    Get PDF
    We analyze the potential of the CERN Large Hadron Collider (LHC) to study anomalous trilinear vector-boson interactions W^+ W^- \gamma and W^+ W^- Z through the single production of electroweak gauge bosons via the weak boson fusion processes q q -> q q W (-> \ell^\pm \nu) and q q -> q q Z(-> \ell^+ \ell^-) with \ell = e or \mu. After a careful study of the standard model backgrounds, we show that the single production of electroweak bosons at the LHC can provide stringent tests on deviations of these vertices from the standard model prediction. In particular, we show that single gauge boson production exhibits a sensitivity to the couplings \Delta \kappa_{Z,\gamma} similar to that attainable from the analysis of electroweak boson pair production.Comment: 20 pages, 6 figure

    Gamma Ray Burst Neutrinos Probing Quantum Gravity

    Get PDF
    Very high energy, short wavelength, neutrinos may interact with the space-time foam predicted by theories of quantum gravity. They would propagate like light through a crystal lattice and be delayed, with the delay depending on the energy. This will appear to the observer as a violation of Lorenz invariance. Back of the envelope calculations imply that observations of neutrinos produced by gamma ray bursts may reach Planck-scale sensitivity. We revisit the problem considering two essential complications: the imprecise timing of the neutrinos associated with their poorly understood production mechanism in the source and the indirect nature of their energy measurement made by high energy neutrino telescopes.Comment: 14 pages, 2 figure

    Brownian dynamics approach to interacting magnetic moments

    Full text link
    The question how to introduce thermal fluctuations in the equation of motion of a magnetic system is addressed. Using the approach of the fluctuation-dissipation theorem we calculate the properties of the noise for both, the fluctuating field and fluctuating torque (force) representation. In contrast to earlier calculations we consider the general case of a system of interacting magnetic moments without the assumption of axial symmetry. We show that the interactions do not result in any correlations of thermal fluctuations in the field representation and that the same widely used formula can be used in the most general case. We further prove that close to the equilibrium where the fluctuation-dissipation theorem is valid, both, field and torque (force) representations coincide, being different far away from it

    Lepton number violating interactions and their effects on neutrino oscillation experiments

    Full text link
    Mixing between bosons that transform differently under the standard model gauge group, but identically under its unbroken subgroup, can induce interactions that violate the total lepton number. We discuss four-fermion operators that mediate lepton number violating neutrino interactions both in a model-independent framework and within supersymmetry (SUSY) without R-parity. The effective couplings of such operators are constrained by: i) the upper bounds on the relevant elementary couplings between the bosons and the fermions, ii) by the limit on universality violation in pion decays, iii) by the data on neutrinoless double beta decay and, iv) by loop-induced neutrino masses. We find that the present bounds imply that lepton number violating neutrino interactions are not relevant for the solar and atmospheric neutrino problems. Within SUSY without R-parity also the LSND anomaly cannot be explained by such interactions, but one cannot rule out an effect model-independently. Possible consequences for future terrestrial neutrino oscillation experiments and for neutrinos from a supernova are discussed.Comment: 28 pages, 2 figures, Late

    MiniBooNE Results and Neutrino Schemes with 2 sterile Neutrinos: Possible Mass Orderings and Observables related to Neutrino Masses

    Get PDF
    The MiniBooNE and LSND experiments are compatible with each other when two sterile neutrinos are added to the three active ones. In this case there are eight possible mass orderings. In two of them both sterile neutrinos are heavier than the three active ones. In the next two scenarios both sterile neutrinos are lighter than the three active ones. The remaining four scenarios have one sterile neutrino heavier and another lighter than the three active ones. We analyze all scenarios with respect to their predictions for mass-related observables. These are the sum of neutrino masses as constrained by cosmological observations, the kinematic mass parameter as measurable in the KATRIN experiment, and the effective mass governing neutrinoless double beta decay. It is investigated how these non-oscillation probes can distinguish between the eight scenarios. Six of the eight possible mass orderings predict positive signals in the KATRIN and future neutrinoless double beta decay experiments. We also remark on scenarios with three sterile neutrinos. In addition we make some comments on the possibility of using decays of high energy astrophysical neutrinos to discriminate between the mass orderings in presence of two sterile neutrinos.Comment: 33 pages, 8 figures. Comments added, to appear in JHE

    The Maximal U(1)LU(1)_L Inverse Seesaw from d=5d=5 Operator and Oscillating Asymmetric Sneutrino Dark Matter

    Get PDF
    The maximal U(1)LU(1)_L supersymmetric inverse seesaw mechanism (MLLSIS) provides a natural way to relate asymmetric dark matter (ADM) with neutrino physics. In this paper we point out that, MLLSIS is a natural outcome if one dynamically realizes the inverse seesaw mechanism in the next-to minimal supersymmetric standard model (NMSSM) via the dimension-five operator (N)2S2/M(N)^2S^2/M_*, with SS the NMSSM singlet developing TeV scale VEV; it slightly violates lepton number due to the suppression by the fundamental scale MM_*, thus preserving U(1)LU(1)_L maximally. The resulting sneutrino is a distinguishable ADM candidate, oscillating and favored to have weak scale mass. A fairly large annihilating cross section of such a heavy ADM is available due to the presence of singlet.Comment: journal versio

    Distribution and Kinematics of the Circum-nuclear Molecular Gas in the Seyfert 1 Galaxy NGC 3227

    Get PDF
    We present new interferometric observations of the 12CO(1-0), 12CO(2-1) and HCN (1-0) molecular line emission in NGC 3227 obtained with the IRAM Plateau de Bure interferometer (PdBI). We achieved an unprecedented angular resolution in the 12CO(2-1) line of about 0.6'' corresponding to only about 80pc at a distance of 17.3Mpc. The mapped 12CO emission is concentrated in the inner 8'' and accounts for 20% of the total 30m CO line flux. The 12CO emission is resolved into an asymmetric nuclear ring with a diameter of about 3''. The HCN line emission is mostly unresolved at our resolution of ~2.4'' and contains all of the single dish flux. We have decomposed the observed molecular gas motions into a circular and non-circular component revealing that about 80% of the gas in the circum-nuclear region exhibits pure circular rotation. We find evidence for bar streaming onto the nuclear ring and a redshifted emission knot on the ring perimeter. In the central arcsecond the gas shows apparent counter rotation. This behavior can be best explained by a warping of the inner molecular gas disk rather than gas motion in a nuclear bar potential. We detected molecular gas at a distance from the nucleus of only ~13pc with a velocity of about 75 km/s with respect to the systemic velocity and find that within the central arcsecond the rotation curve is rising again. This is the first time that millimetric CO-line emission has been detected interferometrically at such small distances to the nucleus of a Seyfert galaxy. These measurements indicate a lower limit on the enclosed mass of about 2x10^7 M_solar in the inner 15pc.Comment: accepted for Ap.J. April issue, 54 pages, 22 figure

    Bi-large Neutrino Mixing and Mass of the Lightest Neutrino from Third Generation Dominance in a Democratic Approach

    Full text link
    We show that both small mixing in the quark sector and large mixing in the lepton sector can be obtained from a simple assumption of universality of Yukawa couplings and the right-handed neutrino Majorana mass matrix in leading order. We discuss conditions under which bi-large mixing in the lepton sector is achieved with a minimal amount of fine-tuning requirements for possible models. From knowledge of the solar and atmospheric mixing angles we determine the allowed values of sin \theta_{13}. If embedded into grand unified theories, the third generation Yukawa coupling unification is a generic feature while masses of the first two generations of charged fermions depend on small perturbations. In the neutrino sector, the heavier two neutrinos are model dependent, while the mass of the lightest neutrino in this approach does not depend on perturbations in the leading order. The right-handed neutrino mass scale can be identified with the GUT scale in which case the mass of the lightest neutrino is given as (m_{top}^2/M_{GUT}) sin^2 \theta_{23} sin^2 \theta_{12} in the limit sin \theta_{13} = 0. Discussing symmetries we make a connection with hierarchical models and show that the basis independent characteristic of this scenario is a strong dominance of the third generation right-handed neutrino, M_1, M_2 < 10^{-4} M_3, M_3 = M_{GUT}.Comment: typos correcte

    S_3-flavour symmetry as realized in lepton flavour violating processes

    Full text link
    A variety of lepton flavour violating effects related to the recent discovery of neutrino oscillations and mixings is here systematically discussed in terms of an S_3-flavour permutational symmetry. After a brief review of some relevant results on lepton masses and mixings, that had been derived in the framework of a Minimal S_3-Invariant Extension of the Standard Model, we derive explicit analytical expressions for the matrices of the Yukawa couplings and compute the branching ratios of some selected flavour changing neutral current (FCNC) processes, as well as, the contribution of the exchange of neutral flavour changing scalars to the anomaly of the muon's magnetic moment as functions of the masses of the charged leptons and the neutral Higgs bosons. We find that the S_3 x Z_2 flavour symmetry and the strong mass hierarchy of the charged leptons strongly suppress the FCNC processes in the leptonic sector well below the present experimental upper bounds by many orders of magnitude. The contribution of FCNC to the anomaly of the muon's magnetic moment is small but non-negligible.Comment: 23 pages, one figure. To appear in J. Phys A: Mathematical and Theoretical (SPE QTS5
    corecore