A variety of lepton flavour violating effects related to the recent discovery
of neutrino oscillations and mixings is here systematically discussed in terms
of an S_3-flavour permutational symmetry. After a brief review of some relevant
results on lepton masses and mixings, that had been derived in the framework of
a Minimal S_3-Invariant Extension of the Standard Model, we derive explicit
analytical expressions for the matrices of the Yukawa couplings and compute the
branching ratios of some selected flavour changing neutral current (FCNC)
processes, as well as, the contribution of the exchange of neutral flavour
changing scalars to the anomaly of the muon's magnetic moment as functions of
the masses of the charged leptons and the neutral Higgs bosons. We find that
the S_3 x Z_2 flavour symmetry and the strong mass hierarchy of the charged
leptons strongly suppress the FCNC processes in the leptonic sector well below
the present experimental upper bounds by many orders of magnitude. The
contribution of FCNC to the anomaly of the muon's magnetic moment is small but
non-negligible.Comment: 23 pages, one figure. To appear in J. Phys A: Mathematical and
Theoretical (SPE QTS5