2,382 research outputs found

    Development of a Displacement-Based Design Method for Steel Frame-RC Wall Buildings

    Get PDF
    A Displacement-Based Design (DBD) methodology for steel frame-RC wall structures has been proposed. The effectiveness of the methodology in limiting lateral displacements has been tested by designing a set of case studies. Their structural performance was investigated through nonlinear time-history analyses by using seven spectrum-compatible accelerograms. For the seismic intensity and modeling assumptions considered in this work, it is found that the proposed design methodology controls the lateral displacements of the buildings well

    The phylogenetically distinct early human embryo

    Get PDF
    The phylogenetic singularity of the human embryo remains unresolved as cell types of the human blastocyst have resisted classification. Combining clustering of single cellular transcriptomes and dynamically expressed genes we resolve the cell types. This unveils the missing inner cell mass (ICM) and reveals classical step-wise development. Conversely, numerous features render our blastocyst phylogenetically distinct: unlike mice, our epiblast is self-renewing and we have blastocyst non-committed cells (NCCs), part of an apoptosis-mediated quality control/purging process. At the transcriptome-level all primate embryos are distinct as the pluripotent cell types are uniquely fast evolving. A substantial fraction of gene expression gain and loss events between human and new-world monkeys involve endogenous retrovirus H (ERVH). Human pluripotent cells are unique in which (H)ERVH's are active, the extent to which these modulate neighbour gene expression and their ability to suppress mutagenic transposable elements. Current naive cultures are heterogeneous and both developmentally and phylogenetically "confused"

    High Energy Cosmic Rays from Neutrinos

    Get PDF
    We discuss recent models in which neutrinos, which are assumed to have mass in the eV range, originate the highest energy cosmic rays by interaction with the enhanced density in the galactic halo of the relic cosmic neutrino background. We make an analytical calculation of the required neutrino fluxes to show that the parameter space for these models is constrained by horizontal air shower searches and by the total number of background neutrinos, so that only models which have fairly unnatural halo sizes and enhanced densities are allowed.Comment: 14 pages, 3 ps figures. To appear in Phys. Rev.

    Improvement of convective drying of carrot by applying power ultrasound. Influence of mass load density

    Full text link
    [EN] Power ultrasound is considered to be a novel and promising technology with which to improve heat and mass transfer phenomena in drying processes. The aim of this work was to contribute to the knowledge of ultrasound application to air drying by addressing the influence of mass load density on the ultrasonically assisted air drying of carrot. Drying kinetics of carrot cubes were carried out (in triplicate) with or without power ultrasound application (75 W, 21.7 kHz) at 40 C, 1 m/s, and several mass load densities: 12, 24, 36, 42, 48, 60, 72, 84, 96, 108, and 120 kg/m3 . The experimental results showed a significant (p < 0.05) influence of both factors, mass load density and power ultrasound application, on drying kinetics. As expected, the increase of mass load density did not affect the effective moisture diffusivity (De, m2 /s) but produced a reduction of the mass transfer coefficient (k, kg water/m2 /s). This was explained by considering perturbations in the air flow through the drying chamber thus creating preferential pathways and, as a consequence, increasing external mass transfer resistance. On the other hand, it was found that the power ultrasound application increased the mass transfer coefficient and the effective moisture diffusivity regardless of the mass load density used. However, the influence of power ultrasound was not significant at the highest mass load densities tested (108 and 120 kg/m3 ), which may be explained from the high ratio (acoustic energy/sample mass) found under those experimental conditions. Therefore, the application of ultrasound was considered as a useful technology with which to improve the convective drying, although its effects may be reduced at high mass load densities.The authors acknowledge the financial support of the Spanish Ministry of Science and Technology (DPI2009-14549-C04-04) and the Universidad Politecnica de Valencia (PAID-06-08-3180).Cárcel Carrión, JA.; García Pérez, JV.; Riera, E.; Mulet Pons, A. (2011). Improvement of convective drying of carrot by applying power ultrasound. Influence of mass load density. Drying Technology. 29(2):174-182. https://doi.org/10.1080/07373937.2010.483032S17418229

    Mixtures of Bosonic and Fermionic Atoms in Optical Lattices

    Full text link
    We discuss the theory of mixtures of Bosonic and Fermionic atoms in periodic potentials at zero temperature. We derive a general Bose--Fermi Hubbard Hamiltonian in a one--dimensional optical lattice with a superimposed harmonic trapping potential. We study the conditions for linear stability of the mixture and derive a mean field criterion for the onset of a Bosonic superfluid transition. We investigate the ground state properties of the mixture in the Gutzwiller formulation of mean field theory, and present numerical studies of finite systems. The Bosonic and Fermionic density distributions and the onset of quantum phase transitions to demixing and to a Bosonic Mott--insulator are studied as a function of the lattice potential strength. The existence is predicted of a disordered phase for mixtures loaded in very deep lattices. Such a disordered phase possessing many degenerate or quasi--degenerate ground states is related to a breaking of the mirror symmetry in the lattice.Comment: 11 pages, 8 figures; added discussions; conclusions and references expande

    Phenomenology of Pc(4380)+, Pc(4450)+ and related states

    Get PDF
    The Pc(4380)+P_c(4380)^+ and Pc(4450)+P_c(4450)^+ states recently discovered at LHCb have masses close to several relevant thresholds, which suggests they can be described in terms of meson-baryon degrees of freedom. This article explores the phenomenology of these states, and their possible partners, from this point of view. Competing models can be distinguished by the masses of the neutral partners which have yet to be observed, and the existence or otherwise of further partners with different isospin, spin, and parity. Future experimental studies in different decay channels can also discriminate among models, using selection rules and algebraic relations among decays. Among the several possible meson-baryon pairs which could be important, one implies that the states are mixtures of isospins 1/2 and 3/2, with characteristic signatures in production and decay. A previous experimental study of a Cabibbo-suppressed decay showed no evidence for the states, and further analysis is required to establish the significance of this non-observation. Several intriguing similarities suggest that Pc(4450)+P_c(4450)^+ is related to the X(3872)X(3872) meson.Comment: 16 pages, 1 figure. Journal version (some very minor changes from arXiv v1

    Present status and perspective on the future use of aflatoxin biocontrol products

    Get PDF
    Open Access Journal; Published online: 01 Apr 2020Aflatoxin contamination of important food and feed crops occurs frequently in warm tropical and subtropical regions. The contamination is caused mainly by Aspergillus flavus and A. parasiticus. Aflatoxin contamination negatively affects health and trade sectors and causes economic losses to agricultural industries. Many pre- and post-harvest technologies can limit aflatoxin contamination but may not always reduce aflatoxin concentrations below tolerance thresholds. However, the use of atoxigenic (non-toxin producing) isolates of A. flavus to competitively displace aflatoxin producers is a practical strategy that effectively limits aflatoxin contamination in crops from field to plate. Biocontrol products formulated with atoxigenic isolates as active ingredients have been registered for use in the US, several African nations, and one such product is in final stages of registration in Italy. Many other nations are seeking to develop biocontrol products to protect their crops. In this review article we present an overview of the biocontrol technology, explain the basis to select atoxigenic isolates as active ingredients, describe how formulations are developed and tested, and describe how a biocontrol product is used commercially. Future perspectives on formulations of aflatoxin biocontrol products, along with other important topics related to the aflatoxin biocontrol technology are also discussed

    SN1987A and the Status of Oscillation Solutions to the Solar Neutrino Problem (including an appendix discussing the NC and day/night data from SNO)

    Get PDF
    We study neutrino oscillations and the level-crossing probability PLZ in power-law potential profiles A(r)\propto r^n. We give local and global adiabaticity conditions valid for all mixing angles theta and discuss different representations for PLZ. For the 1/r^3 profile typical of supernova envelopes we compare our analytical to numerical results and to earlier approximations used in the literature. We then perform a combined likelihood analysis of the observed SN1987A neutrino signal and of the latest solar neutrino data, including the recent SNO CC measurement. We find that, unless all relevant supernova parameters (released binding energy, \bar\nu_e and \bar\nu_{\mu,\tau} temperatures) are near their lowest values found in simulations, the status of large mixing type solutions deteriorates considerably compared to fits using only solar data. This is sufficient to rule out the vacuum-type solutions for most reasonable choices of astrophysics parameters. The LOW solution may still be acceptable, but becomes worse than the SMA-MSW solution which may, in some cases, be the best combined solution. On the other hand the LMA-MSW solution can easily survive as the best overall solution, although its size is generally reduced when compared to fits to the solar data only.Comment: 31 pages, 32 eps figures; 5 pages, 5 eps figures addendum in v2, discussing the recent SNO NC data and changes in SN paramete

    Relic neutrino masses and the highest energy cosmic rays

    Get PDF
    We consider the possibility that a large fraction of the ultrahigh energy cosmic rays are decay products of Z bosons which were produced in the scattering of ultrahigh energy cosmic neutrinos on cosmological relic neutrinos. We compare the observed ultrahigh energy cosmic ray spectrum with the one predicted in the above Z-burst scenario and determine the required mass of the heaviest relic neutrino as well as the necessary ultrahigh energy cosmic neutrino flux via a maximum likelihood analysis. We show that the value of the neutrino mass obtained in this way is fairly robust against variations in presently unknown quantities, like the amount of neutrino clustering, the universal radio background, and the extragalactic magnetic field, within their anticipated uncertainties. Much stronger systematics arises from different possible assumptions about the diffuse background of ordinary cosmic rays from unresolved astrophysical sources. In the most plausible case that these ordinary cosmic rays are protons of extragalactic origin, one is lead to a required neutrino mass in the range 0.08 eV - 1.3 eV at the 68 % confidence level. This range narrows down considerably if a particular universal radio background is assumed, e.g. to 0.08 eV - 0.40 eV for a large one. The required flux of ultrahigh energy cosmic neutrinos near the resonant energy should be detected in the near future by AMANDA, RICE, and the Pierre Auger Observatory, otherwise the Z-burst scenario will be ruled out.Comment: 19 pages, 22 figures, REVTeX

    Escape from washing out of baryon number in a two-zero-texture general Zee model compatible with the large mixing angle MSW solution

    Full text link
    We propose a two-zero-texture general Zee model, compatible with the large mixing angle Mikheyev-Smirnov-Wolfenstein solution. The washing out of the baryon number does not occur in this model for an adequate parameter range. We check the consistency of a model with the constraints coming from flavor changing neutral current processes, the recent cosmic microwave background observation, and the Z-burst scenario.Comment: 22 pages, 2 eps figures, Type set revtex
    corecore