48 research outputs found

    Substantial contribution of iodine to Arctic ozone destruction

    Get PDF
    Unlike bromine, the effect of iodine chemistry on the Arctic surface ozone budget is poorly constrained. We present ship-based measurements of halogen oxides in the high Arctic boundary layer from the sunlit period of March to October 2020 and show that iodine enhances springtime tropospheric ozone depletion. We find that chemical reactions between iodine and ozone are the second highest contributor to ozone loss over the study period, after ozone photolysis-initiated loss and ahead of bromine.Iodine chemistry plays a more important role than bromine chemistry in tropospheric ozone losses in the Arctic, according to ship-based observations of halogen oxides from March to October 2020.Peer reviewe

    Viral entry and escape from antibody-mediated neutralization influence hepatitis C virus reinfection in liver transplantation

    Get PDF
    End-stage liver disease caused by chronic hepatitis C virus (HCV) infection is a leading cause for liver transplantation (LT). Due to viral evasion from host immune responses and the absence of preventive antiviral strategies, reinfection of the graft is universal. The mechanisms by which the virus evades host immunity to reinfect the liver graft are unknown. In a longitudinal analysis of six HCV-infected patients undergoing LT, we demonstrate that HCV variants reinfecting the liver graft were characterized by efficient entry and poor neutralization by antibodies present in pretransplant serum compared with variants not detected after transplantation. Monoclonal antibodies directed against HCV envelope glycoproteins or a cellular entry factor efficiently cross-neutralized infection of human hepatocytes by patient-derived viral isolates that were resistant to autologous host-neutralizing responses. These findings provide significant insights into the molecular mechanisms of viral evasion during HCV reinfection and suggest that viral entry is a viable target for prevention of HCV reinfection of the liver graft

    More Bucks for the Bang: New Space Solutions, Impact Tourism and one Unique Science & Engineering Opportunity at T-6 Months and Counting

    Get PDF
    For now, the Planetary Defense Conference Exercise 2021's incoming fictitious(!) asteroid, 2021 PDC, seems headed for impact on October 20th, 2021, exactly 6 months after its discovery. Today (April 26th, 2021), the impact probability is 5%, in a steep rise from 1 in 2500 upon discovery six days ago. We all know how these things end. Or do we? Unless somebody kicked off another headline-grabbing media scare or wants to keep civil defense very idle very soon, chances are that it will hit (note: this is an exercise!). Taking stock, it is barely 6 months to impact, a steadily rising likelihood that it will actually happen, and a huge uncertainty of possible impact energies: First estimates range from 1.2 MtTNT to 13 GtTNT, and this is not even the worst-worst case: a 700 m diameter massive NiFe asteroid (covered by a thin veneer of Ryugu-black rubble to match size and brightness) would come in at 70 GtTNT. In down to Earth terms, this could be all between smashing fireworks over some remote area of the globe and a 7.5 km crater downtown somewhere. Considering the deliberate and sedate ways of development of interplanetary missions it seems we can only stand and stare until we know well enough where to tell people to pack up all that can be moved at all and save themselves. But then, it could just as well be a smaller bright rock. The best estimate is 120 m diameter from optical observation alone, by 13% standard albedo. NASA's upcoming DART mission to binary asteroid (65803) Didymos is designed to hit such a small target, its moonlet Dimorphos. The Deep Impact mission's impactor in 2005 successfully guided itself to the brightest spot on comet 9P/Tempel 1, a relatively small feature on the 6 km nucleus. And 'space' has changed: By the end of this decade, one satellite communication network plans to have launched over 11000 satellites at a pace of 60 per launch every other week. This level of series production is comparable in numbers to the most prolific commercial airliners. Launch vehicle production has not simply increased correspondingly - they can be reused, although in a trade for performance. Optical and radio astronomy as well as planetary radar have made great strides in the past decade, and so has the design and production capability for everyday 'high-tech' products. 60 years ago, spaceflight was invented from scratch within two years, and there are recent examples of fastpaced space projects as well as a drive towards 'responsive space'. It seems it is not quite yet time to abandon all hope. We present what could be done and what is too close to call once thinking is shoved out of the box by a clear and present danger, to show where a little more preparedness or routine would come in handy - or become decisive. And if we fail, let's stand and stare safely and well instrumented anywhere on Earth together in the greatest adventure of science

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≄ II, EF ≀35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Effect of Bone Morphogenetic Protein-2 in the Treatment of Long Bone Non-Unions

    No full text
    Fuchs T, Stolberg-Stolberg J, Michel P, et al. Effect of Bone Morphogenetic Protein-2 in the Treatment of Long Bone Non-Unions. Journal of clinical medicine. 2021;10(19): 4597.BACKGROUND: Delayed fracture healing continues to cause significant patient morbidity and an economic burden to society. Biological stimulation of non-unions includes application of recombinant bone morphogenetic protein-2 (rhBMP-2). However, rhBMP-2 use continues to be a matter of controversy as literature shows scarce evidence for treatment effectiveness. QUESTIONS: The objective of this study was to evaluate the effectiveness of rhBMP-2 treatment on long bone non-unions measuring union rate and time to union. Furthermore, we assess risk factors for treatment failure. METHODS AND PATIENTS: A total of 91 patients with non-unions of long bones were treated with rhBMP-2 (n = 72) or standard care without BMP (n = 19) at our institution. Patient characteristics, comorbidities, nicotine consumption, and complications were recorded. Bone healing was assessed by plane X-rays and clinical examination. Patients were followed up with for 24 months. RESULTS: Overall, there was significantly faster bone healing after rhBMP-2 application compared to the no-BMP group (p < 0.001; HR = 2.78; 95% CI 1.4-5.6). Union rates differed significantly between rhBMP-2 compared to the no-BMP group (89% vs. 47%; p < 0.001). At the humerus, there was neither a significantly higher union rate in the rhBMP-2 (83%) compared to the no-BMP group (50%) (p = 0.26; n = 12) nor a faster bone healing with a median time of 9 months in both groups (HR = 2.01; 95% CI 0.49-8.61; p = 0.315). The 33 femora treated using rhBMP-2 healed significantly faster than 9 femora in the no-BMP group (HR = 2.93; 95% CI 1.00-8.4; p = 0.023) with significant differences in union rate with 85% and 44%, respectively (p = 0.022). Regarding tibia non-unions, 25 out of 27 (93%) healed with a median of 9 months after rhBMP-2 application with no significant difference in the no-BMP group (33%) in time to union (p = 0.097) but a significantly higher union rate (p = 0.039). There was no effect of comorbidities, age, sex, soft tissue damage, or nicotine use on time to union, union rate, or secondary interventions.; CONCLUSION: Consistent with the literature, overall, significantly higher union rates with reduced time to union were achieved after rhBMP-2 application. Femoral and tibial non-unions in particular seem to profit from rhBMP-2 application

    Synthesis, life cycle assessment, and polymerization of a vanillin-based spirocyclic diol toward polyesters with increased glass transition temperature

    No full text
    Bio-based rigid diols are key building blocks in the development and preparation of high performance bioplastics with improved thermal and dimensional stability. Here, we report on the straightforward two-step synthesis of a diol with a spirocyclic acetal structure, starting from bio-based vanillin and pentaerythritol. According to a preliminary life cycle assessment (LCA), the greenhouse gas emissions of this bio-based diol are significantly lower than that of bio-based 1,3-propanediol. Copolymerization of the rigid spiro-diol with 1,6-hexanediol and dimethyl terephthalate by melt polymerization yielded a series of copolyesters, which showed improved glass transition temperature and thermal stability upon the incorporation of the spiro-acetal units. The crystallinity and melting point of copolyesters decreased with increasing content of the spirocyclic backbone structures. The copolyesters containing 10% of the new diol was semicrystalline while those with 20 and 30% spiro-diol incorporated were completely amorphous. Moreover, dynamic mechanical analysis indicated that the copolyesters showed comparable storage moduli as AkestraTM, a commercial fossil-based high-performance polyester
    corecore