53,533 research outputs found

    Carbon burning in intermediate mass primordial stars

    Full text link
    The evolution of a zero metallicity 9 M_s star is computed, analyzed and compared with that of a solar metallicity star of identical ZAMS mass. Our computations range from the main sequence until the formation of a massive oxygen-neon white dwarf. Special attention has been payed to carbon burning in conditions of partial degeneracy as well as to the subsequent thermally pulsing Super-AGB phase. The latter develops in a fashion very similar to that of a solar metallicity 9 M_s star, as a consequence of the significant enrichment in metals of the stellar envelope that ensues due to the so-called third dredge-up episode. The abundances in mass of the main isotopes in the final ONe core resulting from the evolution are X(^{16}O) approx 0.59, X(^{20}Ne) approx 0.28 and X(^{24}Mg) approx 0.05. This core is surrounded by a 0.05 M_s buffer mainly composed of carbon and oxygen, and on top of it a He envelope of mass 10^{-4} M_sComment: 11 pages, 11 figures, accepted for publication in A&

    Validation Through Simulations of a Cn2 Profiler for the ESO/VLT Adaptive Optics Facility

    Full text link
    The Adaptive Optics Facility (AOF) project envisages transforming one of the VLT units into an adaptive telescope and providing its ESO (European Southern Observatory) second generation instruments with turbulence corrected wavefronts. For MUSE and HAWK-I this correction will be achieved through the GALACSI and GRAAL AO modules working in conjunction with a 1170 actuators Deformable Secondary Mirror (DSM) and the new Laser Guide Star Facility (4LGSF). Multiple wavefront sensors will enable GLAO and LTAO capabilities, whose performance can greatly benefit from a knowledge about the stratification of the turbulence in the atmosphere. This work, totally based on end-to-end simulations, describes the validation tests conducted on a Cn2 profiler adapted for the AOF specifications. Because an absolute profile calibration is strongly dependent on a reliable knowledge of turbulence parameters r0 and L0, the tests presented here refer only to normalized output profiles. Uncertainties in the input parameters inherent to the code are tested as well as the profiler response to different turbulence distributions. It adopts a correction for the unseen turbulence, critical for the GRAAL mode, and highlights the effects of masking out parts of the corrected wavefront on the results. Simulations of data with typical turbulence profiles from Paranal were input to the profiler, showing that it is possible to identify reliably the input features for all the AOF modes.Comment: 15 pages, 12 figures, accepted for publication in the MNRAS Accepted 2015 January 22. Received 2015 January 21; in original form 2014 December

    Exploring the structure of the quenched QCD vacuum with overlap fermions

    Full text link
    Overlap fermions have an exact chiral symmetry on the lattice and are thus an appropriate tool for investigating the chiral and topological structure of the QCD vacuum. We study various chiral and topological aspects of quenched gauge field configurations. This includes the localization and chiral properties of the eigenmodes, the local structure of the ultraviolet filtered field strength tensor, as well as the structure of topological charge fluctuations. We conclude that the vacuum has a multifractal structure.Comment: 68 pages, 31 figures, file size: 1.7 MB (PDF

    What Produced the Ultraluminous Supernova Remnant in NGC 6946?

    Get PDF
    The ultraluminous supernova remnant (SNR) in NGC 6946 is the brightest known SNR in X-rays, ~1000 times brighter than Cas A. To probe the nature of this remnant and its progenitor, we have obtained high-dispersion optical echelle spectra. The echelle spectra detect H-alpha, [N II], and [O III] lines, and resolve these lines into a narrow (FWHM ~20--40 km/s) component from un-shocked material and a broad (FWHM ~250 km/s) component from shocked material. Both narrow and broad components have unusually high [N II]/H-alpha ratios, ~1. Using the echelle observation, archival HST images, and archival ROSAT X-ray observations, we conclude that the SNR was produced by a normal supernova, whose progenitor was a massive star, either a WN star or a luminous blue variable. The high luminosity of the remnant is caused by the supernova ejecta expanding into a dense, nitrogen-rich circumstellar nebula created by the progenitor.Comment: 20 pages, 5 figures. To be published in The Astronomical Journal, March 200

    Matrix Product State and mean field solutions for one-dimensional systems can be found efficiently

    Get PDF
    We consider the problem of approximating ground states of one-dimensional quantum systems within the two most common variational ansatzes, namely the mean field ansatz and Matrix Product States. We show that both for mean field and for Matrix Product States of fixed bond dimension, the optimal solutions can be found in a way which is provably efficient (i.e., scales polynomially). This implies that the corresponding variational methods can be in principle recast in a way which scales provably polynomially. Moreover, our findings imply that ground states of one-dimensional commuting Hamiltonians can be found efficiently.Comment: 5 pages; v2: accepted version, Journal-ref adde

    Flat deformation of a spacetime admitting two Killing fields

    Get PDF
    It is shown that given an analytic Lorentzian metric on a 4-manifold, gg, which admits two Killing vector fields, then it exists a local deformation law η=ag+bH\eta = a g + b H, where HH is a 2-dimensional projector, such that η\eta is flat and admits the same Killing vectors. We also characterize the particular case when the projector HH coincides with the quotient metric. We apply some of our results to general stationary axisymmetric spacetime

    Efficient out-coupling and beaming of Tamm optical states via surface plasmon polariton excitation

    Get PDF
    We present evidence of optical Tamm states to surface plasmon polariton (SPP) coupling. We experimentally demonstrate that for a Bragg stack with a thin metal layer on the surface, hybrid Tamm-SPP modes may be excited when a grating on the air-metal interface is introduced. Out-coupling via the grating to free space propagation is shown to enhance the transmission as well as the directionality and polarization selection for the transmitted beam. We suggest that this system will be useful on those devices, where a metallic electrical contact as well as beaming and polarization control is needed

    Stanilov-Tsankov-Videv Theory

    Get PDF
    We survey some recent results concerning Stanilov-Tsankov-Videv theory, conformal Osserman geometry, and Walker geometry which relate algebraic properties of the curvature operator to the underlying geometry of the manifold.Comment: This is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson, published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Biaxial Strain in the Hexagonal Plane of MnAs Thin Films: The Key to Stabilize Ferromagnetism to Higher Temperature

    Get PDF
    The alpha-beta magneto-structural phase transition in MnAs/GaAs(111) epilayers is investigated by elastic neutron scattering. The in-plane parameter of MnAs remains almost constant with temperature from 100 K to 420 K, following the thermal evolution of the GaAs substrate. This induces a temperature dependent biaxial strain that is responsible for an alpha-beta phase coexistence and, more important, for the stabilization of the ferromagnetic alpha-phase at higher temperature than in bulk. We explain the premature appearance of the beta-phase at 275 K and the persistence of the ferromagnetic alpha-phase up to 350 K with thermodynamical arguments based on the MnAs phase diagram. It results that the biaxial strain in the hexagonal plane is the key parameter to extend the ferromagnetic phase well over room temperature.Comment: 4 pages, 3 figures, accepted for publication in Physical Review Letter

    Resolving parameter degeneracies in long-baseline experiments by atmospheric neutrino data

    Full text link
    In this work we show that the physics reach of a long-baseline (LBL) neutrino oscillation experiment based on a superbeam and a megaton water Cherenkov detector can be significantly increased if the LBL data are combined with data from atmospheric neutrinos (ATM) provided by the same detector. ATM data are sensitive to the octant of θ23\theta_{23} and to the type of the neutrino mass hierarchy, mainly through three-flavor effects in e-like events. This allows to resolve the so-called θ23\theta_{23}- and sign(Δm312\Delta m^2_{31})-parameter degeneracies in LBL data. As a consequence it becomes possible to distinguish the normal from the inverted neutrino mass ordering at 2σ2\sigma CL from a combined LBL+ATM analysis if sin22θ130.02\sin^2 2\theta_{13} \gtrsim 0.02. The potential to identify the true values of sin22θ13\sin^2 2\theta_{13} and the CP-phase δcp\delta_{cp} is significantly increased through the lifting of the degeneracies. These claims are supported by a detailed simulation of the T2K (phase II) LBL experiment combined with a full three-flavor analysis of ATM data in the HyperKamiokande detector.Comment: 25 pages, 10 figure
    corecore