4,113 research outputs found

    Solid flow drives surface nanopatterning by ion-beam irradiation

    Get PDF
    Ion Beam Sputtering (IBS) is known to produce surface nanopatterns over macroscopic areas on a wide range of materials. However, in spite of the technological potential of this route to nanostructuring, the physical process by which these surfaces self-organize remains poorly under- stood. We have performed detailed experiments of IBS on Si substrates that validate dynamical and morphological predictions from a hydrodynamic description of the phenomenon. Our results elucidate flow of a nanoscopically thin and highly viscous surface layer, driven by the stress created by the ion-beam, as a description of the system. This type of slow relaxation is akin to flow of macroscopic solids like glaciers or lead pipes, that is driven by defect dynamics.Comment: 12 pages, 4 figure

    Coupling of morphology to surface transport in ion-beam irradiated surfaces. I. Oblique incidence

    Get PDF
    We propose and study a continuum model for the dynamics of amorphizable surfaces undergoing ion-beam sputtering (IBS) at intermediate energies and oblique incidence. After considering the current limitations of more standard descriptions in which a single evolution equation is posed for the surface height, we overcome (some of) them by explicitly formulating the dynamics of the species that transport along the surface, and by coupling it to that of the surface height proper. In this we follow recent proposals inspired by ``hydrodynamic'' descriptions of pattern formation in aeolian sand dunes and ion-sputtered systems. From this enlarged model, and by exploiting the time-scale separation among various dynamical processes in the system, we derive a single height equation in which coefficients can be related to experimental parameters. This equation generalizes those obtained by previous continuum models and is able to account for many experimental features of pattern formation by IBS at oblique incidence, such as the evolution of the irradiation-induced amorphous layer, transverse ripple motion with non-uniform velocity, ripple coarsening, onset of kinetic roughening and other. Additionally, the dynamics of the full two-field model is compared with that of the effective interface equation.Comment: 23 pages, 14 figures. Movies of figures 6, 7, and 8 available at http://gisc.uc3m.es/~javier/Movies

    The impact of the Kasatochi eruption on the Moon's illumination during the August 2008 lunar eclipse

    Full text link
    The Moon's changeable aspect during a lunar eclipse is largely attributable to variations in the refracted unscattered sunlight absorbed by the terrestrial atmosphere that occur as the satellite crosses the Earth's shadow. The contribution to the Moon's aspect from sunlight scattered at the Earth's terminator is generally deemed minor. However, our analysis of a published spectrum of the 16 August 2008 lunar eclipse shows that diffuse sunlight is a major component of the measured spectrum at wavelengths shorter than 600 nm. The conclusion is supported by two distinct features, namely the spectrum's tail at short wavelengths and the unequal absorption by an oxygen collisional complex at two nearby bands. Our findings are consistent with the presence of the volcanic cloud reported at high northern latitudes following the 7-8 August 2008 eruption in Alaska of the Kasatochi volcano. The cloud both attenuates the unscattered sunlight and enhances moderately the scattered component, thus modifying the contrast between the two contributions.Comment: Accepted for publication in Geophysical Research Letter

    The Simple Non-degenerate Relativistic Gas: Statistical Properties and Brownian Motion

    Full text link
    This paper shows a novel calculation of the mean square displacement of a classical Brownian particle in a relativistic thermal bath. The result is compared with the expressions obtained by other authors. Also, the thermodynamic properties of a non-degenerate simple relativistic gas are reviewed in terms of a treatment performed in velocity space.Comment: 6 pages, 2 figure

    Limb imaging of the Venus O2 visible nightglow with the Venus Monitoring Camera

    Full text link
    We investigated the Venus O2 visible nightglow with imagery from the Venus Monitoring Camera on Venus Express. Drawing from data collected between April 2007 and January 2011, we study the global distribution of this emission, discovered in the late 70s by the Venera 9 and 10 missions. The inferred limb-viewing intensities are on the order of 150 kiloRayleighs at the lower latitudes and seem to drop somewhat towards the poles. The emission is generally stable, although there are episodes when the intensities rise up to 500 kR. We compare a set of Venus Monitoring Camera observations with coincident measurements of the O2 nightglow at 1.27 {\mu}m made with the Visible and Infrared Thermal Imaging Spectrometer, also on Venus Express. From the evidence gathered in this and past works, we suggest a direct correlation between the instantaneous emissions from the two O2 nightglow systems. Possible implications regarding the uncertain origin of the atomic oxygen green line at 557.7 nm are noted.Comment: 7 pages, 3 figure

    Aggregation of chemotactic organisms in a differential flow

    Get PDF
    We study the effect of advection on the aggregation and pattern formation in chemotactic systems described by Keller-Segel type models. The evolution of small perturbations is studied analytically in the linear regime complemented by numerical simulations. We show that a uniform differential flow can significantly alter the spatial structure and dynamics of the chemotactic system. The flow leads to the formation of anisotropic aggregates that move following the direction of the flow, even when the chemotactic organisms are not directly advected by the flow. Sufficiently strong advection can stop the aggregation and coarsening process that is then restricted to the direction perpendicular to the flow

    An optimization approach coupling pre-processing with model regression for enhanced chemometrics

    Get PDF
    Chemometric methods are broadly used in the chemical and biochemical sectors. Typically, derivation of a regression model follows data preprocessing in a sequential manner. Yet, preprocessing can significantly influence the regression model and eventually its predictive ability. In this work, we investigate the coupling of preprocessing and model parameter estimation by incorporating them simultaneously in an optimization step. Common model selection techniques rely almost exclusively on the performance of some accuracy metric, yet having a quantitative metric for model robustness can prolong model up-time. Our approach is applied to optimize for model accuracy and robustness. This requires the introduction of a novel mathematical definition for robustness. We test our method in a simulated set up and with industrial case studies from multivariate calibration. The results highlight the importance of both accuracy and robustness properties and illustrate the potential of the proposed optimization approach toward automating the generation of efficient chemometric models

    Coulomb explosion sputtering of selectively oxidized Si

    Full text link
    We have studied multiply charged Arq+ ion induced potential sputtering of a unique system comprising of coexisting Silicon and Silicon oxide surfaces. Such surfaces are produced by oblique angle oxygen ion bombardment on Si(100), where ripple structures are formed and one side of each ripple gets more oxidized. It is observed that higher the potential energy of Arq+ ion, higher the sputtering yield of the non conducting (oxide) side of the ripple as compared to the semiconducting side. The results are explained in terms of Coulomb explosion model where potential sputtering depends on the conductivity of the ion impact sites.Comment: 9 pages and 3 figure
    • 

    corecore