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We study the effect of advection on the aggregation and pattern formation in chemotactic systems described
by Keller-Segel-type models. The evolution of small perturbations is studied analytically in the linear regime
complemented by numerical simulations. We show that a uniform differential flow can significantly alter the
spatial structure and dynamics of the chemotactic system. The flow leads to the formation of anisotropic
aggregates that move following the direction of the flow, even when the chemotactic organisms are not directly
advected by the flow. Sufficiently strong advection can stop the aggregation and coarsening process that is then
restricted to the direction perpendicular to the flow.
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I. INTRODUCTION

Directed motion of microorganisms and cells in response
to chemical signals —chemotaxis—plays an important role
in a wide range of biological processes including migration
of white blood cells, cancer invasion �1�, embryonic devel-
opment or in locating nutrients by bacteria, algae, etc. �2,3�.
In many cases the chemotactic cells not only detect, but also
produce chemical signals that may attract other members of
the population. This type of communication based on
chemoattractant odors or pheromones can control group be-
havior, aggregation, swarming, and collective decisions
�quorum sensing� in bacterial colonies �4�, slime mold �5�, or
insect populations. Often the medium into which the chemi-
cal signal is released is not stationary but is a moving fluid
�e.g., air or water� while the chemotactic cells or organisms
are not transported by the flow as their motility is restricted
to crawling on a solid surface. For example, microorganisms
may attach to surfaces developing biofilms �6� found in natu-
ral environments or bioreactors and on a wide variety of
surfaces, including living tissues, pipings, and industrial or
medical devices. The interface between a surface and an
aqueous medium such as water or blood provides an ideal
environment for the development of microorganisms. The
growth and structure of biofilm communities is a complex
process regulated by the properties of the cell surface, di-
verse characteristics of the medium, type of substratum, and
hydrodynamics of the aqueous medium. The influence of hy-
drodynamics on biofilm structures has been studied recently
�7–9� and was shown that the current velocity affects the
structure and dynamics of natural biofilms resulting in differ-
ent colony shapes �9�. In Ref. �10� is described the use of
“slow” laminar flows �from 100 �m s−1� to pattern cell cul-
ture substrate in capillary systems. Another interesting prop-
erty that may influence the structure of biofilms is the cell-
to-cell signaling or quorum sensing. For example, in Ref.

�11� the importance of intercellular molecule signaling on
biofilm differentiation is studied.

The response of attached cells to a shear flow and the
effects of cell-to-cell signaling on the aggregation have been
also studied for a particular slime mold: the Dictyostelium
discoideum. Using a laminar flow Décavé and co-workers
established the critical shear stress for D. discoideum cells on
glass �12� and studied the mechanisms responsible for the
induced enhanced motility �13�. On the other hand the ag-
gregation of D. discoideum by means of secreting cyclic ad-
enosine monophosphate �cAMP� has been modeled using
stochastic and discrete approaches; the continuum descrip-
tions of cell aggregation have been mostly employed and
later derived from mechanistic and microscopic descriptions
�14�. The mathematical properties of these equations are rel-
evant for a broad range of models that have been developed
to understand the aggregation process in a variety of organ-
isms, pigmentation patterning, neural crest migration, in-
flammatory response, tumor growth, etc.

In this work we will study the simultaneous effect of dif-
ferential advection and cell-to-cell signaling on the aggrega-
tion and pattern formation of chemotactic biological popula-
tions using a model of partial differential equations to
describe the evolution of the cell density and the chemical
signal concentration. The resulting system is similar to the
nonlinear chemical reactions studied by Rovinsky and Men-
zinger involving activator and inhibitor kinetics where a dif-
ferential flow can induce a pattern forming instability
�15,16�.

II. MODEL

A well known classical continuum model of chemotaxis at
the population level is the Keller-Segel �KS� model �5� that
describes the evolution of the density of chemotactic cells,
u�x , t�, and the chemoattractant concentration, v�x , t�, at
point x and time t. When the chemical field v is advected by
a uniform flow V and the density field evolves on a fixed
substrate, we have*javiermunozgarcia@gmail.com; http://gisc.uc3m.es/~javier
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�tu = � · �Du � u − ��u� � v� , �1�

�tv = Dv�
2v + fu − sv − V · �v , �2�

where Du and Dv are constant diffusivities. The chemoattrac-
tant is assumed to be produced proportionally to the local
cell density �with a constant of proportionality f� while it is
degraded with a frequency s. Although in Ref. �13� it was
shown that a shear flow increases the cell motility in D.
discoideum, since we will consider slower flow velocities
than in Ref. �13� �which were on the order of the detachment
velocity�, in Eq. �1� we assume that representative values of
Du are closer to those measured in the absence of flow such
as in Ref. �17�. Assuming no-flux or periodic boundary con-
ditions the total mass of the biological component is con-
served and can be characterized by the average density. In
the original KS model �5,18� V=0 and the chemotactic flux
is proportional to the particle density, i.e., ��u�=�0u. Exten-
sions of this model with more general forms for ��u� have
also been studied such as the chemotaxis model with the
prevention of overcrowding introduced in Ref. �19� where
��u�=�0u�1−u /umax� with umax as the maximum allowed
cell density. An important feature of the KS model �observed
in biological systems such as slime mold populations� is that
it demonstrates an aggregation instability when the total
mass of cells is larger then a certain threshold. Properties of
the solutions of the KS system and its variants have been
studied extensively �for recent reviews, see Refs. �14,20,21��.
Interesting analogies between KS-type chemotaxis models
and nonlinear mean-field Fokker-Planck equations and gen-
eralized thermodynamics have been pointed out in �22�.

In order to simplify the analysis of Eqs. �1� and �2�
we introduce nondimensional variables by rescaling
x�� �s /Dv�1/2x, t��st, u��u0

−1u, and v��s�fu0�−1v, with
u0 as the initial mean cell density, resulting in the following
system:

�tu = � · �D � u − ��u� � v� , �3�

�tv = �2v + u − v − V · �v , �4�

where we have defined D�Du /Dv, ��u��� f / �sDv���u�,
V���sDv�−1/2V, and omitted primes. In order to estimate the
typical spatial and temporal scales in this problem we can
use parameter values given in Ref. �18� for the chemoattrac-
tant cAMP: Dv�10−6 cm2 s−1 and s�1 s. Thus, the typical
units for the rescaled length, time, and velocity are on the
order of 0.1 �m, 1 s, and 10 �m s−1, respectively.

It is important to note that for D. discoideum the critical
shear stress for detachment on glass is on the order of �1/2
�2.6 Pa �12�. For low Reynolds number when the inertial
effects can be neglected the wall shear stress on the adhering
cells is proportional to the uniform velocity following �
=6�V /d, where � is the dynamic viscosity of the fluid and d
is the distance between the top of the chamber and the sub-
strate. Using d=0.25 mm as in Ref. �13� and water at room
temperature ��=10−3 Pa s�, we obtain an estimate for the
detachment velocity: V1/2�105 �m s−1. Thus, as we will see
below, the flow velocities considered here are smaller than
the velocity needed to detach the cells from the substrate and

we can assume that the organisms are not advected by the
flow, although they are still able to move by crawling on the
solid surface as represented by the chemotactic and diffusive
terms.

III. LINEAR ANALYSIS

In order to gain insight into the system we consider the
stability of the spatially uniform solution. Assuming uniform
initial conditions for u and v with v�t=0��v0 all spatial
derivatives vanish in Eqs. �3� and �4� and we have the solu-
tions u�t�=1 and v�t�=1+ �v0−1�e−t. Thus, independent of
the initial conditions the concentration tends to 1 for large
times. To investigate pattern forming instability in this
system, we consider the evolution of spatially nonuniform
periodic perturbations added to the uniform steady state
of the form u�x , t�=1+ û exp�iq ·x+��q�t� and v�x , t�=1
+ v̂ exp�iq ·x+��q�t� and study whether the perturbation is
amplified or damped out in the course of time. Here, q is the
wave vector of the perturbation, ��q� is the corresponding
dispersion relation, and û and v̂ are the amplitudes of the
perturbation at t=0. Substituting these expressions into Eqs.
�3� and �4� and neglecting quadratic terms in û , v̂, we obtain
a linear system of equations where nontrivial solutions only
exist if the determinant of the coefficient matrix is equal to
zero. In contrast to previous chemotactic models where ad-
vection is not considered �see, for example, �23� for a linear
stability study of an inertial model generalizing the KS
model�, the resulting quadratic equation for the dispersion
relation has complex coefficients and reads

�2 + ��a + ib� + �c + id� = 0. �5�

The coefficients a, b, c, and d are functions of parameters
and wave-vector components yielding

a = �D + 1�q2 + 1, �6�

b = V · q , �7�

c = Dq4 + �D − ��1��q2, �8�

d = Dq2V · q . �9�

The real and imaginary parts corresponding to the two com-
plex solutions are �see, for example, p. 95 of �24��

Re���� = −
a

2
�

1

2�2
	��a2 − b2 − 4c�2

+ �2ab − 4d�2�1/2 + a2 − b2 − 4c
1/2, �10�

Im���� = −
b

2
�

sgn�2ab − 4d�
2�2

	��a2 − b2 − 4c�2

+ �2ab − 4d�2�1/2 − a2 + b2 + 4c
1/2. �11�

The real part of � gives the growth or decay rate of the
perturbation amplitude. In particular, the mode correspond-
ing to the maximum of Re���, which we denote by ql, de-
termines the characteristic wavelength of the pattern in the
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linear regime, while the imaginary part describes its propaa-
tion in space. The velocity Vl at which the instability travels
across the substrate, corresponding to the phase velocity of
the mode ql, satisfies the relationship �25�

Vl · ql = − Im���ql�� . �12�

The negative branch of the dispersion relation is uncondi-
tionally stable, i.e., Re��−��0, but the positive branch may
produce nontrivial dynamics and pattern formation for a cer-
tain range of wave numbers. Some insight into the behavior
of the system can be obtained by investigating the limiting
cases of small and large wavelengths. For large values of q
we can expand Eq. �10� to obtain Re��+�=−Dq2; therefore,
the amplitude of perturbations decays exponentially for these
modes. In the case of large-wavelength perturbations the ex-
pansion to the lowest orders in q yields

Re��+� = ���1� − D�q2 − ��1�q2	�1 − D + ��1��q2

+ �V · q�2
 + O�q6� . �13�

Thus, when ��1�−D	0 the positive branch has a band of
unstable modes for small wave vectors. In the case of the
standard KS model, ��1�=�0, the above condition is equiva-
lent to the aggregation threshold: D /�0�1 �5,18�. In Eq.
�13� we observe that the advection velocity appears at the
order q4. This means that, when the above condition for in-
stability is satisfied, there is always a band of unstable modes
with long wavelengths around q=0, but the range of unstable
modes and their growth rate decrease with the advection ve-
locity. This stabilizing effect of the flow is in contrast with
the behavior of reaction-diffusion systems studied by Rovin-
sky and Menzinger �15,16� where the differential flow in-
duces an instability at a finite wavelength. For the imaginary
part of �, we have the following expansion of Eq. �11� for
small wave vectors:

Im��+� = − ��1�q2�V · q� + O�q5� . �14�

Therefore, although the particle density is not directly ad-
vected by the flow, using Eq. �12� we see that the chemotaxis
induces a phase velocity Vl that is inversely proportional to
the square of the wavelength and, consequently, it is small
relative to the advection velocity.

IV. PATTERN FORMATION IN ONE DIMENSION

Figure 1�a� shows the effect of the advection velocity on
the real part of the dispersion relation given by Eq. �10� for a
one-dimensional �1D� system. When V increases the wave
number of the dominant mode corresponding to the maxi-
mum of Re��+�, ql, decreases �Fig. 1�b��. In fact, from the
expansion of Eq. �10� for small q given by Eq. �13� we have
ql= �
 / �2K��1/2 with 
=��1�−D and K=��1���1−D�+��1�
+V2�. Thus, for large V, the dominant wavelength in the
linear regime, �l=2� /ql, is proportional to the advection ve-
locity. The phase velocity of the spatial pattern �Eq. �12�� is
also shown in Fig. 1�b� as a function of the advection veloc-
ity for the exact dispersion relation �Eq. �11��. We notice that
the phase velocity has a maximum for a certain value of V.
Thus, surprisingly, when the advection velocity is increased

beyond this value, the phase velocity of the pattern decreases
as V is increased. This nonmonotonic dependence can also
be shown using the expansion of Im��+� for small wave-
number modes �Eq. �14�� from where a compact analytical
expression for the phase velocity is obtained �see Fig. 1�b��,

Vl = ��1�V�ql�2 =
���1� − D�V

2��1 − D� + ��1� + V2�
. �15�

Although this expression is only valid for small values of
ql, it is qualitatively similar to the exact solution and already
shows that Vl increases linearly for small values of V and
when the advection velocity exceeds a certain threshold, Vt

=��1−D�+��1�, larger values of V induce a slower pattern
movement.

It is interesting to discuss how the linear wavelength and
the phase velocity are modified when D is decreased since
in typical experiments Du /Dv
1. For strong advection we
can use the expansion of Eq. �10� for small q to obtain the
minimal value of the linear wavelength. Since in the aggre-
gation regime, 0�D���1�, the linear wavelength is
an increasing function of D, for D→0 we obtain �min

l

=23/2��1+��1�+V2, from where we see that the linear
wavelength becomes larger when the chemosensitivity is in-
creased. On the other hand, Vt is a decreasing function of D.
Thus, in the limit D→0 the maximum phase velocity is
reached when the advection is Vt=�1+��1�. Therefore, as
we could expect, the efficiency of the particles following the
chemical field depends on the chemosensitivity. For larger
values of ��1� the cells can more accurately follow the
chemical field up to larger values of the advection velocity.

For the numerical simulations we use the chemotactic re-
sponse function: ��u�=�0u�1−u /umax� that avoids the singu-
larities associated with other models. Interestingly, we have
also found that, in the case of the standard linear response,
��u�=�0u, advection can suppress the singularity and pro-
duce qualitatively similar behavior to the previous function
when V is sufficiently large. We consider periodic boundary
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FIG. 1. �Color online� �a� Real part of the dispersion relation
Re��+� given by Eq. �10� as a function of q for a 1D system with
��u�=�0u�1−u /umax�, for D=1, �0=2.5, umax=4, and different val-
ues of the advection velocity �from top to bottom� V=0, 1, 2, 5, and
10. �b� Linear dominant mode ql �black lines� and phase velocity Vl

�red �gray� lines� as functions of the advection velocity. The solid
lines represent the exact solution obtained from Eqs. �10� and �11�.
The dashed lines represent the approximate solution for small
wavelengths. The velocity of the pattern and the dominant mode
measured from the numerical simulations are represented by tri-
angles and circles, respectively.
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conditions with initial fields in the uniform steady state with
a small amplitude random perturbation. The parameters in
Eqs. �3� and �4� were set to D=1, �0=2.5, and umax=4 for
the one- and two-dimensional �2D� simulations.

Representative one-dimensional numerical simulations of
the particle density profiles u�x , t� are shown in Fig. 2 for
two different values of the advection velocity. In the case of
V=1 �Fig. 2�a�� we observe a slow coarsening process which
tends to reduce the number of structures as observed in the
system without advection �19�. However, for V=5 �Fig. 2�b��
after a short transient a periodic pattern with a constant
wavelength develops. As shown in Fig. 2, in the presence of
advection the x→−x symmetry of the profiles is broken �see
also Fig. 3�a�� and the pattern propagates in the positive di-
rection �i.e., in the direction of the advection velocity�. In the
absence of coarsening �i.e., for values of V�2� the pattern
moves uniformly with a well-defined velocity as shown in
Fig. 2�b�. The velocity of the pattern was measured for dif-
ferent values of V and is plotted in Fig. 1�b�. The measured
velocity agrees well with the analytical results obtained from
the linear stability analysis. Independent of the initial chemi-
cal concentration, after a transient time the behavior of the
chemoattractant v is very similar to the density profiles, as
shown in Fig. 3�a� where the profiles of u and v are plotted
together for different values of V. For large advection veloci-
ties the particles cannot “follow” the chemical gradients, the
two profiles are more different and the aggregates are more
spread out. Figure 3�b� shows the temporal evolution of the
wavelength ��t� �measured as two times the average distance
between consecutive minima and maxima� for different val-
ues of V. Aggregation starts earlier for larger values of V, and

for strong enough advection values �larger than Vt� coarsen-
ing is interrupted and the wavelength of the pattern becomes
constant with a final value which is proportional to V as
predicted by the linear analysis �see Fig. 1�b��. Thus, the
nonlinear effects �such as coarsening� are avoided for large
values of V and the system remains in the linear regime.
Similar results are obtained for the standard KS model,
��u�=�0u, with the difference that for slow advection the
numerical simulations do not reach a stationary state, indi-
cating an aggregation singularity with unlimited growth of
the density in some points.

V. PATTERN FORMATION IN TWO DIMENSIONS

The effect of the advection term in the real part of the
dispersion relation given by Eq. �10� for a 2D system is
shown in Fig. 4. Without loss of generality we assume that
the advection is along the x axis. Thus, we can write V
= �V ,0� and we plot Re��+� as a function of qx and qy for
different values of V. When V=0 the system is isotropic and
all the wave vectors within a distance ql from the origin
maximize Re��+� �Fig. 4�a��. When V is nonzero, the maxi-
mum is oriented along the y axis but the absolute value is not
affected by the value of V �Fig. 4�b��. The effect of the ad-
vection on the wavelength and orientation of the pattern can
be analyzed in the small q limit using Eq. �13�. It can be
shown that the dominant mode is always oriented along the y
axis and its value is qy

l = �
 / �2Ky��1/2, where Ky =��1���1
−D�+��1�� and 
 is the same as defined for the 1D case �see
the Appendix�. Thus, in contrast to the one-dimensional sys-
tem, the observed dominant wavelength of the pattern in the
linear regime is independent of the advection velocity V,
although the features of the pattern are altered by the sym-
metry breaking induced by the advection. For the phase ve-
locity, using the expansion of Im��+� for small q and Eq.
�12� we have Vl ·ql /ql=��1�ql�V ·ql�=0 because V= �V ,0�
and ql= �0,qy

l �. Therefore, the dominant mode in the pattern
is not moving since it is oriented in the y axis that is perpen-
dicular to the advection velocity. However, for modes in
the x axis, qx, the phase velocity in this direction is Vx

l

=��1�qx
2V, which is proportional to the advection velocity

and increases with the wave number.
Two-dimensional numerical simulations were performed

using a cubic interpolation semi-Lagrangian scheme �26� for
the advection. For the spatial discretization of the particle
density we used the method proposed recently by Grima and
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FIG. 2. �a� Particle density profiles at equally spaced times �pro-
files are offset vertically� between t=0 �bottom� and t=3500 �top�
for �a� V=1 and �b� V=5.
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FIG. 3. �Color online� �a� Density u �solid line� and signal con-
centration v �dashed line� profiles at t=3500 for �bottom to top�
V=0, 1, 2, 5, and 10 �profiles are offset vertically�. �b� Temporal
evolution of the lateral pattern wavelength ��t� for V=0 �black
circles�, V=1 �red squares�, V=5 �blue diamonds�, and V=10 �ma-
genta triangles�. Error bars represent the standard deviation calcu-
lated from 150 different random initial conditions.
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FIG. 4. �Color online� Real part of the dispersion relation
Re��+� given by Eq. �10� as a function of qx and qy for a 2D system
with �a� V=0 and �b� V=2.

JAVIER MUÑOZ-GARCÍA AND ZOLTÁN NEUFELD PHYSICAL REVIEW E 80, 061902 �2009�

061902-4



Newman �27� that allows for an accurate analysis of the evo-
lution of the system without the dissipative effects of other
schemes. In the absence of advection a slow coarsening pro-
cess occurs in which, after long times, the organisms accu-
mulate into a single aggregate �19�. When advection takes
place the resulting pattern is not isotropic and the dominant
wave vector is oriented along the y axis. The temporal evo-
lution of u for different values of the advection velocity is
shown in Fig. 5. As in the 1D case, the evolution of the
chemical field is very similar to the density field �see supple-
mentary movies �28��. As predicted above, the pattern does
not propagate in the y direction and the coarsening process
along the y axis is not affected by the advection �see supple-
mentary movies �28��. Thus, in this direction the pattern fea-
tures remain the same when the advection velocity is in-
creased. A different scenario is found in the x direction where
the pattern moves with a velocity which increases with V.
The simulations also show that smaller aggregates move
faster than larger ones, consistent with the dependence of the

phase velocity on the wave number in the linear analysis. As
in the 1D case, the characteristic wavelength of the pattern in
the x direction increases with V. For slow advection there is
a clear coarsening which leads to smaller propagation veloc-
ity of the aggregate as predicted above. For finite system
sizes and large values of the advection velocity, the wave-
length of the dominant linear instability in the x direction
becomes larger than the system size and the resulting pattern
is homogeneous in the x direction, observing a static pattern
in this direction �see Fig. 5 for V=10�.

VI. CONCLUSIONS

In this work we have studied theoretically how an ad-
vected uniform flow influences the aggregation dynamics in
Keller-Segel-type models. We found that, in the presence of
a differential flow, an advective instability produces a pattern
moving in the direction of the flow. Interestingly, although
the organisms are not directly advected, the advection of the

(b)(a) (c) (d)

(f)(e) (g) (h)

(j)(i) (l)(k)

FIG. 5. Temporal evolution of u for different values of the advection velocity: V=1 �first row�, 2 �second row�, and 10 �third row�; and
different times: t=35 �first column�, 70 �second column�, 200 �third column�, and 870 �fourth column�. The x axis is horizontally oriented
and the system size is 128�128. See also supplementary movies �28�.

AGGREGATION OF CHEMOTACTIC ORGANISMS IN A… PHYSICAL REVIEW E 80, 061902 �2009�

061902-5



chemotactic signal induces a movement of the particle den-
sity as the organisms try to follow regions of high chemical
concentrations. When the organisms mobility due to chemo-
taxis is weak in comparison to the advective flow �which is
typically much faster�, the balance between the chemotactic
flux of the organism density and the advective transport of
the chemical field breaks down, and it is then restored by a
change in the characteristic of the spatial patterns that be-
come strongly anisotropic with elongated stripelike struc-
tures aligned to the direction of the flow. Furthermore, as
shown above, for flows larger than a certain threshold the
organism cannot follow the chemotaxis signal reducing their
velocity and eventually preventing the formation of large ag-
gregates. Thus, the presence of a linear advection term inhib-
its the formation of large gradients and diminishes the non-
linear effects. This stabilizing effect may completely stop the
chemotactic aggregation and the coarsening process in the
direction of the flow. Although a simple unidirectional flow
cannot suppress the coarsening in the perpendicular direc-
tion, preliminary results with more general nonuniform time-
dependent velocity fields in two dimensions show that aggre-
gation may be halted preventing the appearance of
singularities associated with the KS models. This is similar
to the arrested coarsening process observed in binary mix-
tures �29,30�.

The theoretical results on the distribution of chemotactic
cell populations under the influence of a differential flow are
relevant for various natural and artificial systems including
biofilms and could also be studied experimentally in the con-
text of Dictyostelium aggregation. This work may also pro-
vide a starting point for the study of more general biological
pattern formation phenomena in advected environments.
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APPENDIX: LINEAR PATTERN ORIENTATION

The experimentally observed pattern is mainly oriented
along the direction which yields the maximum value of the
real part of the dispersion relation, and its wavelength is
associated with the wave vector ql= �qx

l ,qy
l �. This vector veri-

fies

� � Re��+�
�qx

�
ql

= � � Re��+�
�qy

�
ql

= 0, �A1�

which have the following real independent solutions:

q0 = �0,0�, q1 = 
� 


2K
,0�, q2 = 
0,� 


2Ky
� ,

�A2�

where 
, K, and Ky are defined as in the main text and
assumed to be positive. In order to decide which of the re-
maining solutions provide the absolute maximum of Re��+�,
we finally substitute the wave vectors given by Eq. �A2� into
Eq. �13�; we obtain simply

�Re��+��q0
= 0, �Re��+��q1

=

2

4K
, �Re��+��q2

=

2

4Ky
,

�A3�

from where, since K	Ky for V�0, we conclude that
ql=q2.
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