3,068 research outputs found

    An Adaptive ANP & ELECTRE IS-Based MCDM Model Using Quantitative Variables

    Full text link
    [EN] The analytic network process (ANP) is a discrete multi-criteria decision-making (MCDM) method conceived as a generalization of the traditional analytic hierarchical process (AHP) to address its limitations. ANP allows the incorporation of interdependence and feedback relationships between the criteria and alternatives that make up the system. This implies much more complexity and intervention time, which reduces the expert¿s ability to make accurate and consistent judgments. The present paper takes advantage of the usefulness of this methodology by formulating the model for exclusively quantitative variables, simplifying the decision problem by resulting in fewer paired comparisons. Seven sustainability-related criteria are used to determine, among four design alternatives for a building structure, which is the most sustainable over its life cycle. The results reveal that the number of questions required by the conventional AHP is reduced by 92%. The weights obtained between the AHP and ANP groups show significant variations of up to 71% in the relative standard deviation of some criteria. This sensitivity to subjectivity has been implemented by combining the ANP-ELECTRE IS methods, allowing the expert to reflect the view of the decision problem with greater flexibility and accuracy. The sensitivity of the results on different methods has been analyzed.Grant PID2020-117056RB-I00 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe".Sánchez-Garrido, AJ.; Navarro, IJ.; García, J.; Yepes, V. (2022). An Adaptive ANP & ELECTRE IS-Based MCDM Model Using Quantitative Variables. Mathematics. 10(12):1-24. https://doi.org/10.3390/math10122009124101

    Evolution and breakup of viscous rotating drops

    Get PDF
    We study the evolution of a viscous fluid drop rotating about a fixed axis at constant angular velocity OmegaOmega or constant angular momentum L surrounded by another viscous fluid. The problem is considered in the limit of large Ekman number and small Reynolds number. The analysis is carried out by combining asymptotic analysis and full numerical simulation by means of the boundary element method. We pay special attention to the stability/instability of equilibrium shapes and the possible formation of singularities representing a change in the topology of the fluid domain. When the evolution is at constant OmegaOmega, depending on its value, drops can take the form of a flat film whose thickness goes to zero in finite time or an elongated filament that extends indefinitely. When evolution takes place at constant L and axial symmetry is imposed, thin films surrounded by a toroidal rim can develop, but the film thickness does not vanish in finite time. When axial symmetry is not imposed and L is sufficiently large, drops break axial symmetry and, depending on the value of L, reach an equilibrium configuration with a 2-fold symmetry or break up into several drops with a 2- or 3-fold symmetry. The mechanism of breakup is also describe

    Circumstellar envelopes of semi-regular long-period variables: mass-loss rate estimates and general model-fitting of the molecular gas

    Full text link
    We aim to study the main properties of a volume-limited unbiased sample of well-characterized semi-regular variables (SRs) in order to clarify important issues, such as the formation of axially symmetric planetary nebulae (PNe) from spherical circumstellar envelopes (CSEs), which takes place during the mass-loss process along the AGB phase. We present new high-S/N IRAM 30m observations of the 12CO J=2-1, J=1-0, and 13CO J=1-0 lines, in a volume-limited sample of SRs. We analyzed the data by characterizing the main properties of the CSEs. The 12CO J=2-1 data were used to study the profiles, while the 12CO J=1-0 data were used to estimate mass-loss rates for the complete sample. We have classified the sources into four groups according to the different profiles and final gas expansion velocities. Type 1 and 2 profiles are broad and narrow symmetric lines, respectively. Type 3 profiles on the contrary are strange profiles with very pronounced asymmetries. Finally, type 4 profiles are those showing two different components: a narrow line profile superimposed on a broad pedestal component. Interestingly, we report a moderate correlation between mass-loss rates and 12CO J=1-0/J=2-1 line intensity ratios for O-rich SRs, suggesting a different behaviour between C- and O-rich SRs. Using SHAPE+shapemol, we find a unified simple model based on an oblate spheroid placed in different orientations that may explain all the 12CO profiles in the sample, indicating that the gas expansion is in general predominantly equatorial. Moreover, in order to explain the type 4 profiles, we define an extra component which may somehow be a biconical structure or similar. Type 1 and 2 profiles, curiously, may also be explained by standard spherically symmetric envelopes. We conclude that most circumstellar shells around SRs show axial, strongly nonspherical symmetry.Comment: 32 pages, 28 figures, and 10 tables, accepted for publication in A&

    Asteroseismology with the WIRE satellite. I. Combining Ground- and Space-based Photometry of the Delta Scuti Star Epsilon Cephei

    Get PDF
    We have analysed ground-based multi-colour Stromgren photometry and single-filter photometry from the star tracker on the WIRE satellite of the delta scuti star Epsilon Cephei. The ground-based data set consists of 16 nights of data collected over 164 days, while the satellite data are nearly continuous coverage of the star during 14 days. The spectral window and noise level of the satellite data are superior to the ground-based data and this data set is used to locate the frequencies. However, we can use the ground-based data to improve the accuracy of the frequencies due to the much longer time baseline. We detect 26 oscillation frequencies in the WIRE data set, but only some of these can be seen clearly in the ground-based data. We have used the multi-colour ground-based photometry to determine amplitude and phase differences in the Stromgren b-y colour and the y filter in an attempt to identify the radial degree of the oscillation frequencies. We conclude that the accuracies of the amplitudes and phases are not sufficient to constrain theoretical models of Epsilon Cephei. We find no evidence for rotational splitting or the large separation among the frequencies detected in the WIRE data set. To be able to identify oscillation frequencies in delta scuti stars with the method we have applied, it is crucial to obtain more complete coverage from multi-site campaigns with a long time baseline and in multiple filters. This is important when planning photometric and spectroscopic ground-based support for future satellite missions like COROT and KEPLER.Comment: 13 pages, 12 figures, 4 tables. Fig. 4 reduced in quality. Accepted by A&

    A simple kinematic model for the Lagrangian description of relevant nonlinear processes in the stratospheric polar vortex

    Get PDF
    In this work, we study the Lagrangian footprint of the planetary waves present in the Southern Hemisphere stratosphere during the exceptional sudden Stratospheric warming event that took place during September 2002. Our focus is on constructing a simple kinematic model that retains the fundamental mechanisms responsible for complex fluid parcel evolution, during the polar vortex breakdown and its previous stages. The construction of the kinematic model is guided by the Fourier decomposition of the geopotential field. The study of Lagrangian transport phenomena in the ERA-Interim reanalysis data highlights hyperbolic trajectories, and these trajectories are Lagrangian objects that are the kinematic mechanism for the observed filamentation phenomena. Our analysis shows that the breaking and splitting of the polar vortex is justified in our model by the sudden growth of a planetary wave and the decay of the axisymmetric flow

    A simple kinematic model for the Lagrangian description of relevant nonlinear processes in the stratospheric polar vortex

    Get PDF
    In this work, we study the Lagrangian footprint of the planetary waves present in the Southern Hemisphere stratosphere during the exceptional sudden Stratospheric warming event that took place during September 2002. Our focus is on constructing a simple kinematic model that retains the fundamental mechanisms responsible for complex fluid parcel evolution, during the polar vortex breakdown and its previous stages. The construction of the kinematic model is guided by the Fourier decomposition of the geopotential field. The study of Lagrangian transport phenomena in the ERA-Interim reanalysis data highlights hyperbolic trajectories, and these trajectories are Lagrangian objects that are the kinematic mechanism for the observed filamentation phenomena. Our analysis shows that the breaking and splitting of the polar vortex is justified in our model by the sudden growth of a planetary wave and the decay of the axisymmetric flow

    Characterization of scintillator screens under irradiation of low energy 133Cs ions

    Get PDF
    An imaging heavy ion beam probe (i-HIBP) diagnostic, for the simultaneous measurement of plasma density, magnetic field and electrostatic potential in the plasma edge, has been installed at ASDEX Upgrade. Unlike standard heavy ion beam probes, in the i-HIBP the probing (heavy) ions are collected by a scintillator detector, creating a light pattern or strike-line, which is then imaged by a camera. Therefore, a good characterization of the scintillator response is needed. Previous works focused on the scintillator behaviour against irradiation with light ions such as hydrogen and alpha particles. In this work we present the characterization of several scintillator screens — TG-Green (SrGa2S4:Eu2+), YAG-Ce (Y3Al5O12:Ce3+) and P11 (ZnS:Ag) — against irradiation with 133Cs+ ions, in an energy range between 5 and 70 keV and ion currents between 105 and 107ions/(s·cm2). Three main properties of the scintillators have been studied: the ionolumenescence efficiency or yield, the linearity and the degradation as a function of the fluence. The highest yield was delivered by the TG-Green scintillator screen with > 8·103 photons/ion at 50 keV. All the samples showed a linear response with increasing incident ion flux. The degradation was quantified in terms of the fluence F1/2, which leads to a reduction of the emissivity by a factor of 2. TG-Green showed the lowest degradation with F1/2= 5.4·1014ions/cm2. After the irradiation the samples were analyzed by Scanning Electron Microscopy (SEM), Rutherford Backscattering Spectrometry (RBS) and Particle Induced X-ray Emission (PIXE). No trace of Cs was found in the irradiated regions. These results indicate that, among the tested materials, TG-Green is the best candidate for the i-HIBP detector.European Union’s Horizon 2020 (grant agreement No. 805162)Helmholtz Association VHNG-1350Spanish Ministry of Science and Innovation FJC2019-041092-I
    • …
    corecore