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Abstract. In this work, we study the Lagrangian footprint
of the planetary waves present in the Southern Hemisphere
stratosphere during the exceptional sudden Stratospheric
warming event that took place during September 2002. Our
focus is on constructing a simple kinematic model that re-
tains the fundamental mechanisms responsible for complex
fluid parcel evolution, during the polar vortex breakdown and
its previous stages. The construction of the kinematic model
is guided by the Fourier decomposition of the geopotential
field. The study of Lagrangian transport phenomena in the
ERA-Interim reanalysis data highlights hyperbolic trajecto-
ries, and these trajectories are Lagrangian objects that are
the kinematic mechanism for the observed filamentation phe-
nomena. Our analysis shows that the breaking and splitting
of the polar vortex is justified in our model by the sudden
growth of a planetary wave and the decay of the axisymmet-
ric flow.

1 Introduction

The availability of high-resolution and high-quality reanaly-
sis data sets provides us with a powerful tool for obtaining
a detailed view of the space–time evolution of the strato-
spheric polar night vortex (SPV), which has implications
for the geophysical fluid dynamics of the entire Earth. The
complexity of such a detailed view, however, makes it diffi-
cult to extract the physical mechanisms underlying notable

transport features in the observed behaviour. The goal of this
work is to gain new insights into the fundamental mecha-
nisms responsible for complex fluid parcel evolution, since
these lie at the heart of our understanding of the dynam-
ics and chemistry of the stratosphere. To this end, we ex-
tract, directly from the data, a simple model with stripped-
down dynamics in order to directly probe, in a controlled
and systematic manner, the physical mechanisms responsi-
ble for the key observed transport features of the SPV. Mod-
els of this kind, termed “kinematic models”, have provided
a simple approach for studying Lagrangian transport and ex-
change associated with flow structures such as meandering
jets and travelling waves (Bower, 1991; Samelson, 1992;
Malhotra and Wiggins, 1998; Samelson and Wiggins, 2006).
Other works have used analytical kinematic models to illus-
trate phenomena in planetary atmospheres (e.g. Rypina et al.,
2007; Morales-Juberías et al., 2015). In the present paper, we
focus on SPV transport processes associated with filamenta-
tion and vortex breaking, of which the dynamical structure is
not fully understood.

The importance of an increased understanding of the SPV
was dramatically demonstrated by the intense research ef-
fort that followed the discovery of the “Antarctic ozone hole”
phenomenon in the 1970s (Chubachi, 1984; Farman et al.,
1985; Solomon, 1988). In the following decades, during
which monitoring of ozone in atmospheric columns above
Antarctica showed little interannual variability, in situ mea-
surements corroborated by satellite data revealed that ozone

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.



266 V. J. García-Garrido et al.: A simple kinematic model for the stratospheric polar vortex

was systematically decreasing in the Antarctic lower strato-
sphere during the southern spring season. Whilst this was
immediately associated with the simultaneous increase in at-
mospheric pollution by anthropogenic activities, several key
questions arose (Solomon, 1999):

1. Why does this occur over Antarctica and not over the
Arctic (since pollution sources are stronger in the North-
ern than in the Southern Hemisphere)?

2. Why does this occur in the spring season?

3. Will ozone depletion extend worldwide?

The research demonstrated that, indeed, increased atmo-
spheric pollution was to be blamed for the ozone depletion
and identified the participating substances and special mech-
anisms. The research also demonstrated that the unique at-
mospheric conditions above Antarctica were responsible for
the geographic preference for ozone destruction. In particu-
lar, it was shown that the strong circumpolar and westerly
SPV characteristic of the southern winter and spring strato-
sphere contributes to the isolation of the cold polar region,
setting up a favourable environment for the special chem-
istry to act. The new knowledge led to the formulation of in-
ternational agreements that resulted in a negative answer to
question (3) above. The analysis of transport of fluid parcels
outside the region isolated by the SPV also showed strong
stirring and mixing of the flow. In this “surf zone” (McIn-
tyre and Palmer, 1984), air parcels can travel long distances
away from the SPV in an environment where contours of
long-lived tracers, such as potential vorticity, can stretch and
form complex patterns. In this region, Rossby wave breaking
(RWB) is associated with irreversible deformation that pulls
material filaments of the outer edge of the SPV and enhances
mixing with the exterior flow (McIntyre and Palmer, 1983,
1984, 1985). Such a process makes the SPV edge a barrier
to horizontal transport of air parcels (Juckes and McIntyre,
1987) while continuously eroding and regenerating the SPV
edge by filamentation (Bowman, 1993). Polvani and Plumb
(1992) and Nakamura and Plumb (1994) examined, in an ide-
alized setting, the way in which Rossby waves break and
eject SPV material outward. The latter conceived a similar
setting in which Rossby waves also break inward.

Dynamical systems theory provides valuable insights into
the transport processes described in the previous paragraph.
Tools of the theory include the geometrical structures, re-
ferred to as hyperbolic trajectories (HTs), their stable and
unstable manifolds, and their intersection in homoclinic and
heteroclinic trajectories that provide the theoretical and com-
putational basis for describing the filamentation process. A
challenge in the application of these concepts to realistic geo-
physical flows is that while the structures mentioned are de-
fined for infinite-time autonomous or periodic systems, geo-
physical flows are typically defined as finite-time data sets
and are not periodic. Mancho et al. (2006b) addressed this

challenge for realistic ocean flows by identifying special hy-
perbolic trajectories in the finite data set, called distinguished
hyperbolic trajectories (DHTs), and by computing stable and
unstable manifolds as curves advected by the velocity field.
A pioneering effort for identifying HTs for the stratosphere
was due to Bowman (1993). McIntyre and Palmer (1983),
Bowman (1996) and de la Cámara et al. (2013) suggested that
HTs are responsible for the cat-eye structures associated with
planetary wave breaking at the critical levels, i.e. where the
wave phase speed matches the background velocity (Stewart-
son, 1977; Warn and Warn, 1978). HTs are at the locations
where the cat-eye structures meet. Perturbation of the cat
eyes results in irreversible deformation of material contours,
signifying Rossby wave breaking. de la Cámara et al. (2013)
and Guha et al. (2016) identified HTs both within and out-
side the SPV, thus suggesting that Rossby wave breaking can
occur in either of those regions. The former authors worked
with reanalysis data, while Guha et al. (2016) used a dynam-
ical model based on the shallow-water equations in which
the perturbing waves are produced in a controlled manner.
Therefore, HTs are essential features for tracer mixing both
outside and inside the vortex, and for occasional air crossings
of the vortex edge.

We focus on the SPV behaviour during the major strato-
spheric sudden warming that occurred in the southern strato-
sphere during September 2002. In this unusual event, the
SPV broke down in the middle stratosphere (Mechoso
et al., 1988; Varotsos, 2002, 2003, 2004; Allen et al., 2003;
Konopka et al., 2005; Esler and Scott, 2005; Manney et al.,
2006; Charlton et al., 2006; Taguchi, 2014). We begin by
identifying key Lagrangian features of the flow in reanaly-
sis data fields. Next, we build a kinematic model of the event
that emulates the behaviour of planetary waves observed in
the data. We show that our model produces strikingly sim-
ilar transport features to those found in the reanalysis data,
confirming the key role played by the HTs during vortex fil-
amentation and breakdown.

The structure of the paper is as follows. Section 2 de-
scribes the data and methods we used. Section 3 describes
the planetary waves in the reanalysis data in the year 2002
in the stratosphere at selected pressure levels (10 hPa). We
relate these to filamentation phenomena and the polar vor-
tex breakdown that occurred in that year. Section 4 repro-
duces the findings obtained with our analytical kinematical
model, confirming the role played by the HTs in the 2002
vortex filamentation and breakdown. Section 5 discusses the
consistency of the kinematic model as representative of at-
mospheric flows that conserve potential vorticity. Finally, in
Sect. 6, we present the conclusions.
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2 Data and methods

2.1 ERA-Interim reanalysis data

To achieve a realistic representation of the atmospheric trans-
port processes, it is crucial to use a reliable and high-quality
data set. We use in this work the ERA-Interim reanalysis data
set produced by a weather forecast assimilation system de-
veloped by the European Centre for Medium-Range Weather
Forecasts (ECMWF; Simmons et al., 2007). de la Cámara
et al. (2013) obtained encouraging results on the suitability
of the ERA-Interim data set for Lagrangian studies of strato-
spheric motions in their comparison of parcel trajectories on
the 475 K isentropic surface (around 20 km) using this data
set and the trajectories of super-pressure balloons released
from Antarctica by the VORCORE project during the spring
of 2005 (Rabier et al., 2010).

The ERA-Interim data set that we selected for this
study is available four times daily (00:00, 06:00, 12:00
and 18:00 UTC), with a horizontal resolution of 1◦× 1◦

in longitude and latitude and 60σ levels in the vertical
from 1000 to 0.1 hPa. The data cover the period from
1979 to the present day (Dee et al., 2011) and they
can be downloaded from http://apps.ecmwf.int/datasets/data/
interim-full-daily/levtype=sfc/. In particular, we will use the
data for the geopotential height on surfaces of constant pres-
sure and wind fields on isentropic surfaces for the period
August–September 2002.

The geopotential height Z on constant pressure surfaces p
is defined as the normalization to g0 = 9.80665 ms−2 (stan-
dard gravity at mean sea level) of the gravitational potential
energy per unit mass at an elevation s (over the Earth’s sur-
face) and has the form

Z(λ,φ,p, t)=
1
g0

s(p,t)∫
0

g (λ,φ,z) dz , (1)

where g is the acceleration due to gravity, λ is longitude, φ
is latitude and z is the geometric height (Holton, 2004). In
the quasi-geostrophic approximation, the geopotential height
is proportional to the streamfunction of the geostrophic flow
(Holton, 2004).

For the analysis of planetary waves, we apply a zonal
Fourier decomposition to the geopotential height field on the
10 hPa pressure level (approximately 850 K potential temper-
ature). The zonal wave decomposition yields

Z = Z0 (φ,p, t)+

∞∑
k=1

Zk (λ,φ,p, t) . (2)

The mean flow is defined as

Z0 (φ,p, t)=
1

2π

2π∫
0

Z(λ,φ,p, t) dλ , (3)

and the different modesZk with wave number k ≥ 1 have the
sinusoidal description:

Zk (λ,φ,p, t)= Bk (φ, t)cos(kλ+ϕk (φ,p, t)) , (4)

where λ ∈ [0,2π) is longitude, φ ∈ [−π/2,π/2] is latitude,
Bk is the amplitude of the wave and ϕk its phase. During the
warming event that occurred in the southern stratosphere dur-
ing September 2002, the flow was dominated by the contri-
butions of the mean flow and the two longest planetary waves
(Z1 and Z2; Krüger et al., 2005)

2.2 Lagrangian descriptors

Dynamical systems theory provides a qualitative description
of the evolution of particle trajectories by means of geomet-
rical objects that partition the phase space (the atmosphere
in our case) into regions in which the system shows distinct
dynamical behaviours. These geometrical structures act as
material barriers to fluid parcels and are closely related to
flow regions known as hyperbolic, where rapid contraction
and expansion takes place. Several Lagrangian techniques
have been developed in order to detect such structures in
geophysical fluids. This is challenging because, while clas-
sical dynamical systems theory is defined for infinite-time
autonomous or periodic systems, in geophysical contexts,
the velocity fields are generally time dependent, aperiodic
in time and defined over a finite discrete space–time do-
main. Among others, techniques developed are finite-size
Lyapunov exponents (FSLEs) (Aurell et al., 1997) and finite-
time Lyapunov exponents (FTLEs) (Haller, 2000; Haller and
Yuan, 2000; Haller, 2001; Shadden et al., 2005). Other tech-
niques include DHTs (Ide et al., 2002; Ju et al., 2003) and the
direct calculation of manifolds as material surfaces (Mancho
et al., 2003, 2004, 2006b), the geodesic theory of Lagrangian
coherent structures (LCS) (Haller and Beron-Vera, 2012) and
the variational theory of LCS (Farazmand and Haller, 2012),
etc. Our choice in this work will be the use of the Lagrangian
descriptor (LD) function M introduced by Madrid and Man-
cho (2009) and Mendoza and Mancho (2010). The function
M has been applied in a variety of geophysical contexts.
For example, in the ocean, it has been used to analyse the
structure of the Kuroshio current (Mendoza and Mancho,
2012), to discuss the performance of different oceanic data
sets (Mendoza et al., 2014), to analyse and develop search
and rescue strategies at sea (García-Garrido et al., 2015) and
to efficiently manage in real time the environmental impact
of marine oil spills (García-Garrido et al., 2016). In the field
of atmospheric sciences, M has been used to study trans-
port processes across the southern SPV and RWB de la Cá-
mara et al., 2012, 2013; Smith and McDonald, 2014; Guha
et al., 2016 and to investigate the Northern Hemisphere major
stratospheric final warming in 2016 (Manney and Lawrence,
2016).
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The dynamical system that governs the atmospheric flow
is given by

ẋ = v (x (t) , t) , x (t0)= x0 , (5)

where x (t;x0) represents the trajectory of a parcel that, at
time t0, is at position x0, and v is the wind velocity field.
Since our interest is in the timescale of stratospheric sudden
warmings (∼ 10 days), we can assume to a good approxi-
mation that the fluid parcels evolve adiabatically. Therefore,
trajectories are constrained to surfaces of constant specific
potential temperature (isentropic surfaces). We will concen-
trate on the 850 K surface, which is in the middle stratosphere
and approximately corresponds to the 10 hPa level. In Sect. 3,
we expand on the reasons for this choice.

To compute fluid parcels trajectories, it is necessary to in-
tegrate Eq. (5). As the velocity field is provided on a discrete
spatiotemporal grid, the first issue to deal with is that of inter-
polation. We apply bicubic interpolation in space and third-
order Lagrangian polynomials in time (see Mancho et al.,
2006a for details). Moreover, for the time evolution, we have
used an adaptive Cash–Karp Runge–Kutta method. It is im-
portant to remark that, as done in de la Cámara et al. (2012)
for the computation of particle trajectories, we use Cartesian
coordinates in order to avoid the singularity problem aris-
ing at the poles from the description of the Earth’s system in
spherical coordinates. For our Lagrangian diagnostic, we use
the M function defined as follows:

M(x0, t0,τ )=

t0+τ∫
t0−τ

‖v(x(t;x0), t)‖ dt, (6)

where ‖ · ‖ stands for the modulus of the velocity vector. At
a given time t0, the function M(x0, t0,τ ) measures the arc
length traced by the trajectory starting at x0 = x(t0) as it
evolves forward and backward in time for a time interval τ .
Sharp changes ofM values (what we call singular features of
M) occur for sufficiently large τ , for very close initial condi-
tions and highlight stable and unstable manifolds.

Mendoza and Mancho (2010, 2012) have performed sys-
tematic numerical computations of invariant manifolds and
found that they are aligned with singular features ofM . They
also provide examples in geophysical flows where manifolds
are defined in a constructive way. Invariant manifolds are
mathematical objects classically defined for infinite time in-
tervals. The unstable (stable) manifold of a hyperbolic fixed
point or periodic trajectory is formed by the set of trajectories
that in negative (positive) infinity time approach these special
trajectories. In geophysical contexts, this definition is not re-
alizable, because only finite-time aperiodic data sets are pos-
sible. Nevertheless, manifolds can still be defined construc-
tively with the following procedure. At the beginning time,
these curves are approximated by segments with short length,
aligned with the stable and unstable subspaces of the DHT
identified with algorithms described in Ide et al. (2002) and

Madrid and Mancho (2009). This starting step aims to build
a finite-time version of the asymptotic property of manifolds.
Next, segments are advected forward and backward in time
by the velocity field. Due to the large expansion and con-
traction rates in the neighbourhood of the DHT, the curves
grow rapidly in forward and backward time and specific is-
sues are addressed by the procedure described in Mancho
et al. (2003) and Mancho et al. (2004). The procedure pro-
vides curves, manifolds, that by construction are barriers to
transport in geophysical flows. In this way, since manifolds
are aligned with singular features of M , the latter belong to
invariant curves of system Eq. (5), and therefore their cross-
ing points are indeed trajectories of system Eq. (5). The capa-
bility of LDs, in general, andM in particular, to reveal invari-
ant manifolds was analysed in detail in Mancho et al. (2013).
Lopesino et al. (2015) and Lopesino et al. (2017) have dis-
cussed, in discrete and continuous-time dynamical systems,
respectively, a theoretical framework for some particular ver-
sions of LDs in specific examples.

The consistency between the output field of Eq. (6) and
FTLE ridges has been discussed in some references (see
Mendoza and Mancho, 2010; de la Cámara et al., 2012; Man-
cho et al., 2013). The integral expression in Eq. (6) can be
split in two terms: one for forward time and the other for
backward time integration. Explicit calculations discussed in
Mancho et al. (2013) for a linear saddle, show that singular
features of the first term are aligned with the stable manifolds
while those for the backward time integration are aligned
with the unstable manifolds. This is similar to what is ob-
tained with FTLEs that highlight stable and unstable mani-
folds, respectively, for forward and backward time integra-
tion intervals. The fact that we choose to add both fields is
advantageous for highlighting hyperbolic trajectories at the
crossing points of the singular features.

As an example relevant to the case that motivates the
present study, we show in Fig. 1 the evaluation of M over
the Southern Hemisphere using τ = 15 on the 850 K isen-
tropic level for 5 August 2002. The representation shows
a stereographic projection (see Snyder, 1987) in which the
SPV is clearly visible by the bright yellow colour as well as
the filamentation phenomena ejecting material both from the
outer and inner parts of the jet. These filaments are related
to the presence of hyperbolic trajectories highlighted in the
figure. The fact that these saddle points of the LD field are
hyperbolic trajectories of system Eq. (5) is numerically sup-
ported. To this end, de la Cámara et al. (2013) show that,
for similar ERA-Interim fields, these points belong to the in-
tersection of stable and unstable manifolds highlighted by
the singular features of the field (see their Fig. 2). In what
follows, all figures showing M were computed with τ = 15.
This choice of τ is made based on the fact that diabatic heat-
ing/cooling processes in the extratropical stratosphere gen-
erally have longer timescales than those of horizontal ad-
vection. Hence, air parcels move on two-dimensional isen-
tropic surfaces to a good approximation (they stay within
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Figure 1. Stereographic projection of Lagrangian descriptors eval-
uated using τ = 15 on the 850 K isentropic level for 5 August 2002
at 00:00:00 UTC. The SPV is clearly visible, as well as three hy-
perbolic trajectories (HTs) outside the vortex (marked with white
arrows), two northeast and one southwest of it. Filamentation phe-
nomena, which occur in the neighbourhood of HTs, are visible both
inside and outside the vortex, where the outer filamentous structures
play the role of eroding the jet barrier. Notice also the presence of
two eddy-coherent structures over the South Atlantic and south of
Australia.

850 K for 30 days) (Plumb, 2007). Moreover, diabatic heat-
ing rates in the Antarctic mid-stratosphere are on the order
of 0.5 K day−1, although uncertainties in this magnitude re-
main large (Fueglistaler et al., 2009). During the time inter-
val of our calculations of isentropic trajectories (τ = 15 days,
i.e. time period of 30 days), the material surface would expe-
rience an increase of potential temperature of around 15 K.
Nevertheless, calculations of M using wind fields at 850 K
and 700 K (not shown) produce qualitatively similar results.
This suggests that horizontal motions of the parcels will be
affected by similar geometric structures at those isentropic
levels and that the isentropic approach is justified in our prob-
lem.

3 Data analysis

As we indicated in the previous section, in order to character-
ize the planetary waves that propagate in the stratosphere, we
carry out a Fourier decomposition of the geopotential height.
In Fig. 2, we show the axisymmetric mean flow together with
waves 1 and 2 in the geopotential field for 22 September 2002
on the 10 hPa pressure surface. The time evolution of these

waves is described in the movies S1–S4 in the Supplement.
Movies S1–S3 show components 0, 1 and 2 separately for the
time period of interest, while S4 shows the superposition of
these three waves. It is important to reiterate that, since the
geopotential provides a good approximation of the stream-
function of the large-scale flow in the extratropical regions,
its analysis will provide us with guidance on the building of
the simple kinematic model presented in the next section.

On the 10 hPa pressure level, the winter SPV in the South-
ern Hemisphere can be broadly defined as a circumpolar
westerly jet. Figure 3a and b illustrate the evolution of the cir-
culation during August–September 2002. We can clearly see
the gradual deceleration of the SPV and the abrupt change in
direction from westerly to easterly velocities at high latitudes
that occurred on 22 September. This was a unique major
sudden stratospheric warming (SSW) in the southern strato-
sphere. Planetary waves in the southern stratosphere were
very active during the period where the 2002 SSW devel-
oped. Figure 3c presents a time series of the ratio between
the amplitudes of waves 1 and 2. Increased wave 1 ampli-
tude results in a displacement of the SPV vortex from a cir-
cumpolar configuration, while increased wave 2 amplitude
results in a stretching the SPV in one direction and contrac-
tion (or “pinching”) in the orthogonal direction. According
to Fig. 3c, the amplitude of wave 1 was generally larger than
that of wave 2 during the entire period, confirming the major
role of this wave. Finally, Fig. 3d displays the variations in
time of the ridges of wave 1 and wave 2. Note that wave 1 is
quasi-stationary, while wave 2 propagates eastward, as is typ-
ical in the southern stratosphere during early spring (Manney
et al., 1991; Quintanar and Mechoso, 1995).

The contribution of these different waves to the evolution
of the SPV and their transport implications are clearly ob-
served in movie S5. A regime giving rise to the stretching of
material lines and the appearance of hyperbolic regions and
the associated filamentation processes is observed. These fil-
amentous structures and HTs are clearly highlighted by the
application of LDs to the wind fields, as shown in Figs. 1
and 4. Filamentation phenomena occur both inside and out-
side the vortex, where the outer filamentous structures play
the role of eroding the jet material barrier. Also, the pres-
ence of HTs in the flow (see captions of Figs. 1 and 4) in-
dicates regions subjected to intense deformation and mixing
(see Ottino, 1989). We emphasize that HTs appear both in-
side and outside the SPV. Finally, the breakup of the SPV
on 24 September 2002 depicted in Fig. 4b (see also movie
S5) occurs when manifolds associated with an HT that forms
within the SPV connect the interior and the exterior of the jet,
allowing for the interchange of parcels through the barrier.
The pinching of the SPV takes place off the pole because Z1
has large amplitudes in the days preceding the breakup. As
we approach 24 September, Z2 becomes the same order as
Z0, and the jet elongates and flattens. At this point, the mean
flow reversal is crucial for completing the pinching process
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Figure 2. Stereographic projection of the geopotential height field and its Fourier decomposition for the 10 hPa pressure level on 22 Septem-
ber 2002 at 00:00:00 UTC: (a) geopotential height; (b) mean flow; (c) Fourier component Z1; (d) Fourier component Z2. Observe how the
amplitude of the planetary wave with wave number 1 can be at least 3 times larger than that of wave number 2.

and the appearance of a HT in the interior of the vortex as
this splits apart.

4 The kinematic model

Kinematic models have a long history in the geophysical
fluid dynamics community. They allow for a detailed para-
metric study of the influence of identified flow structures on
transport and exchange of fluid parcels. All early studies uti-
lizing the dynamical systems approach for understanding La-
grangian transport and exchange associated with flow struc-
tures, such as meandering jets and travelling waves, have em-
ployed kinematic models (see Samelson and Wiggins, 2006).

Continuing in this spirit, we propose a kinematic model
that allows us to identify, in a controlled fashion, the charac-
teristics of the distinct propagating waves that are responsible
for the different Lagrangian features observed in the SPV.
Our kinematic model is inspired by the Fourier component
decomposition of the geopotential extracted from the ERA-
Interim data as discussed in the previous section. The analy-
sis of data from August and September 2002 shows a mean
axisymmetric flow, disturbed mainly by waves with planetary
wave numbers 1 and 2 whose amplitudes and phase speeds
vary in a time-dependent fashion. Therefore, we propose a
kinematic model in the form of a streamfunction given by

9 = ε090+ ε191+ ε292 , (7)

where ε0,ε1,ε1 are the perturbation parameters, which we
will refer to as amplitudes, and 9i are the Fourier com-
ponents, along the azimuthal direction with wave numbers
i = 0,1,2 respectively, which we describe next.

We will work in a plane (x,y) that is the orthographic pro-
jection of the Southern Hemisphere onto the equatorial plane
(Snyder, 1987). For simplicity, and in order to highlight the
periodicity along the azimuthal direction, the components of
the streamfunction are given in terms of polar coordinates
satisfying x = r cos(λ) and y = r sin(λ), where the azimuthal
direction λ is related to the geographical longitude and r is
related to the geographical latitude.

The particular forms of 90, 91 and 92 are inspired by
the Fourier decomposition of the geopotential field shown in
Fig. 2 for the 10 hPa pressure level on 22 September 2002.
Starting with the mean zonal velocity, we will assume a jet
with the following expression:

vλ = r(r − a)e
−r . (8)

Therefore, vλ = 0 only at r = 0 and r = a, and the velocity
decreases exponentially away from the pole. Changing the
values of a will allow us to consider variations in the position
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Figure 3. On the 10 hPa pressure level: (a) time evolution of the geopotential height corresponding to the mean flow. (b) Time evolution
of the mean flow velocity. Notice the change in wind direction from westerly to easterly that takes place from 22 to 24 September 2002.
(c) Time series of the ratio of the amplitudes of waves 1 and 2. (d) Hovmöller (time–latitude) showing the position of the ridges of waves 1
and 2 at latitude 60◦ S.

of the jet maxima. Integration with respect to r gives

90 = e
−r(a r + a− r(r + 2)− 2). (9)

The other streamfunction components are

91 =−r
2e−r

2
sin(λ) (10)

and

92 = (r/d)
2e−r

2/d sin(2λ+ω2t +π/4), (11)

where d and w2 are also tunable constants, and the phase
π/4 was added so that the relative positions of waves 1 and
2 at t = 0 resemble those in Fig. 2. Positive values of ω2 cor-
respond to clockwise rotation. Note that Eq. (11) can repre-
sent a wave that propagates in the azimuthal direction λ if
w2 is different than zero. Figure 5 shows the streamfunctions
Eqs. (9), (10) and (11) in the horizontal plane for the particu-
lar set of parameters indicated in the corresponding caption.
In the panels of Fig. 5 and the following, the centre repre-
sents the South Pole and the circular dashed line indicates
the Equator. The similarity between Figs. 2 and 5 for the se-
lected set of parameters is evident, taking into consideration
that they correspond to stereographic and orthographic pro-
jections, respectively.

The velocity of fluid parcels in the Cartesian coordinates
(x,y) is given by Hamilton’s equations:

dx
dt
=−

∂9

∂y
,

dy
dt
=
∂9

∂x
. (12)

We take the amplitudes to be time dependent in order to em-
ulate changes in magnitudes. Let us start with ε0 constant
and

ε1 = η1(1+ sin(µt +π)), ε2 = η2(1+ sin(µt)). (13)

Here, η1 and η2 are constants. The time dependence of ε1
and ε2 allows us to analyse each wave either separately
or together and their transient effect on the observed La-
grangian structures and therefore their transport implications.
The time dependence in Eq. (13) is such that one amplitude
decreases when the other increases, roughly allowing conser-
vation of the total energy when both waves are present. In the
simulations presented below, µ= 2π/10.

We begin by considering the case of a mean flow with
a = 2 and just wave 2 rotating at different speeds. Further-
more, d = 1 and η2 = 1. Let us start with ω2 = 0, i.e. the
stationary case. For this case, the dotted line in Fig. 6a shows
the azimuthal velocity of the mean flow for ε0 =−2.5, the
dashed line is the azimuthal velocity of wave 2 at λ= 0,
where the radial velocity cancels, the solid line is the total
azimuthal velocity and the blue line is the wave phase speed.
According to Fig. 6a, there are two points where the total
velocity cancels, one being the origin. We can also easily see
that there are additional fixed points at the r coordinate where
the dotted and dashed curves intersect, but placed along the
lines λ= π/2,3π/4. This gives a total of five points in the
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Figure 4. Stereographic projection of the M function calculated using τ = 15 on the 850 K isentropic level for (a) 22 September 2002
at 00:00:00 UTC and (b) 24 September 2002 at 00:00:00 UTC. Filamentation phenomena and hyperbolic trajectories (marked with white
arrows) are nicely captured in these simulations both in the interior and the exterior of the SPV. Observe how the vortex breakdown on
24 September occurs when, in the interior of the vortex, a HT allows the transport and mixing of parcels across the barrier.

(a) (b) (c)

Figure 5. Representation of the three components of the streamfunction. Panel (a) indicates ε090 for a = 2 and ε0 < 0; (b) 91; and (c) 92
for d = 1, w2 = 0.

hemisphere. Figure 6b shows theM function for τ = 15 eval-
uated on this stationary field at t = 0. The minima ofM high-
lighting the five fixed points are evident. Moreover, we can
see two hyperbolic points in the outer part of the vortex.

Next, we consider the case with the same parameters ex-
cept for ω2. Figure 6c shows how this picture changes when
ω2 = 0.1, i.e. for the slow rotation rate of wave 2. The total
azimuthal velocity of the wave, in this case, is given by the
dashed line in Fig. 6a plus the phase velocity represented by
the green line in the figure. If this total azimuthal velocity of
the wave is added up to the mean flow, two points are found
in which the total azimuthal velocity cancels. Additionally,
for a slow rotating wave, similarly to the previous case, the
total azimuthal velocity of the wave can still be equal to the
zonal mean velocity at some points in the domain. Therefore,
Fig. 6c is similar to Fig. 6b except for a rotation. However,
for a fast rotation of wave 2 (ω2 = 4π ; red line), the total
azimuthal velocity of the wave will be larger than the zonal
mean velocity at all points in the domain. In this case, the

pattern of M (Fig. 6d) is very different from the pattern in
Fig. 6b showing no HTs.

Figure 7 displays the function M obtained from the kine-
matic model for the same mean flow of Fig. 6a and differ-
ent parameters for waves 1 and 2. All the representations
are for t = 0 and τ = 15. Figure 7a is for the same case
as Fig. 6b, except that the amplitude of wave 2 changes in
time (η1 = 0,η2 = 1). Again, two HTs are visible in the ex-
ternal jet boundary along which filamentation occurs. Fig-
ure 7b corresponds to just wave number 1, changing am-
plitude in time (η1 = 1,η2 = 0). We can see one HT at the
outer boundary of the jet where material of the vortex is
being ejected. In these figures, transport processes produc-
ing filamentation-ejecting material have close connections to
those present in Figs. 1 and 4a), which have been linked to
Rossby wave breaking at midlatitudes (Guha et al., 2016). In
Fig. 7c, the mean flow is perturbed by the not-rotating wave 2
of Fig. 7a and wave 1 of Fig. 7b (η1 = 1,η2 = 1). In Fig. 7d,
the parameters are the same as Fig. 7c, except that wave 2
rotates (ω2 = 2π/15). The jet shape and filamentary struc-
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Figure 6. Some illustrative parameter choices for the kinematic model. (a) A representation of the mean flow azimuthal velocity (dotted line),
the azimuthal velocity of wave 2 for the stationary case along λ= 0 (dashed line), the total azimuthal velocity along λ= 0 (solid line), the
phase velocity for ω2 = 0.1 (green line) and the phase velocity for ω2 = 4π (red line); (b) representation of the M function for a kinematic
model considering a mean flow (a = 2) plus a stationary wave 2 (d = η2 = 1); (c) the same as (b) for a rotating wave 2 with ω2 = 0.1; (d) the
same as (b) for a rotating wave 2 with ω2 = 4π .

tures greatly resemble those present in the reanalysis data, as
shown in Figs. 1 and 4a.

Figure 8 present a jet which in the interior is eroded
by waves 2 and 1, respectively. To achieve such a config-
uration, free parameters are specifically tuned, including a
zonal mean flow with negative velocities near the pole. In
Fig. 8a, the mean flow obtained with parameters ε0 = 2.6
and a = 0.75 is perturbed by just a travelling wave 2 (η1 =

0,η2 = 1,ω2 =−4π/25) with d = 2. Two filaments project-
ing material from the interior of the vortex are observed, and
they are related to the presence of interior HTs. In Fig. 8b,
the mean flow is obtained with the parameters ε0 = 2.5 and
a = 0.5. This mean flow is perturbed by just wave 1 with
amplitude that varies in time (η1 = 1,η2 = 0). A protruding
material filament from the interior of the vortex is observed,
which is related to the presence of an interior HT. The interior
filaments in these figures recover features that are identified
as interior Rossby wave breaking phenomena in de la Cá-
mara et al. (2013) and Guha et al. (2016), and are also visible
from the reanalysis data, as shown in Figs. 1 and 4a.

Figure 4b shows the pinching of the SPV in the observa-
tions on 24 September 2002, which is before its breakup. In
the kinematic model, this structure can be obtained with a
strong 92 and a substantial contribution from 91 to have a

displacement from the pole. Movies S1, S2, S3 and S4 in the
Supplement illustrate such structures. In order to reproduce
the splitting, we do not need to consider the displacement,
and thus we neglect mode 1 in what follows. Figure 9 shows a
sequence ofM patterns obtained with the amplitude of mean
flow is given by

ε0 = η0(1+ sin(µt +π)), (14)

where η0 =−2.5 and µ= 2π/10, and a stationary wave 2
(ω2 = 0) with amplitude given by Eq. (13). Note that, in this
way, the mean flow weakens as wave 2 strengthens, and vice
versa. The parameters fit a streamfunction which at t = 0 co-
incides with that used in Fig. 7a. The development of an hy-
perbolic point at the pole in the observations (Fig. 4b) can
be clearly seen in Fig. 9a. The two vortices have completely
split at t = 6.

5 Kinematic models and conservation of potential
vorticity

In this section, we discuss the connection between the kine-
matic model introduced in the previous section and a funda-
mental dynamical principle of geophysical fluids. Geophysi-
cal flows that are adiabatic and frictionless conserve the po-
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((d)((c)

((a) ((b)

Figure 7. Lagrangian patterns obtained at t = 0 for τ = 15 and dif-
ferent parameter settings in the kinematic model. (a) Fourier com-
ponents 90 and 92 with the latter adjusted to perturb the vortex in
its outer part; (b) Fourier components 90 and 91 with the latter ad-
justed to perturb the vortex in its outer part; (c) the model keeps90,
91 and 92; (d) the model keeps 90, 91 and 92 with parameters
adjusted differently to (c).

(a) (b)

Figure 8. Lagrangian patterns obtained at t = 0 for τ = 15 and dif-
ferent parameter settings in the kinematic model. In panel (a), the
model keeps 90 and 92 adjusted to perturb the vortex in its interior
part; in panel (b), the model keeps 90 and 91 adjusted to perturb
the vortex in its interior part.

tential vorticity Q along trajectories. Conservation of Q is
expressed as follows:

dQ
dt
= 0. (15)

Here, d /dt stands for the material derivative. A natural ques-
tion here is to discuss whether the proposed kinematic model
conserves Q. Let us assume that our setting is described by
the quasi-geostrophic motion of simple vortices in a shallow-
water system (see Polvani and Plumb, 1992; Nakamura and

(a) (b)

(c) (d)

t = 3 t = 4

t = 5 t = 6

Figure 9. Evolution of the Lagrangian template for the case in
which the mean flow decreases and wave 2 increases. The sequence
reproduces many of the Lagrangian features observed in the split-
ting event that occurred at the end of September 2002 (see movie
S5). (a) t = 3; (b) t = 4; (c) t = 5; (d) t = 6.

Plumb, 1994) in which Q is given by

Q= f0+∇
29 − γ 29 + f0

h

D
. (16)

Here, f0 is a constant related to the rotation rate, D is the
mean depth of the shallow-water system, D−h is the total
depth, h is the bottom boundary of the fluid layer, which is
small when compared to D, and γ = f0/

√
g0D, where g0 is

the gravity constant. 9 is the geostrophic streamfunction for
the horizontal velocity field, in our case given by Eq. (7), with
parameters corresponding to those of Fig. 7d, i.e. ε0 =−2.5,
η1 = 1, η2 = 1, a = 2, d = 1 and ω2 = 2π/15.

We assume that at the initial time, t = 0, the vorticity Q
consists of a circular patch with constant vorticity Q0 inside
and vorticity Q1 outside. At a later time, t = 2, the vorticity
distribution that preserves Eq. (15) is obtained by advecting
the circular contour at t = 0, according to motion Eq. (12),
with algorithms described in Mancho et al. (2004). Figure 10
summarizes the evolution of the vorticity.

In order to preserve Eq. (16) from time t = 0 to time t = 2,
and assuming the barotropic approach in which γ = 0, h is
solved from Eq. (16) as

h

D
=
Q

f0
−
∇

29

f0
− 1. (17)

Figure 11 shows the evolution of the function h/D between
t = 0 and t = 2. In particular, the figure shows results for
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(a) (b)

Figure 10. Evolution of a vorticity patch. (a) Initial vorticity distribution at time t = 0; (b) evolution of the vorticity at time t = 2.

(a) (b)

Figure 11. Evolution of the scaled lower boundary h. (a) The function h/D at time t = 0; (b) evolution of h/D at time t = 2.

Q0 = 2,Q1 = 1.8 and f0 = 20. We note that this calculation
could have been repeated for any initial distribution ofQ de-
fined as a piecewise constant function. The lower boundary
h is thus a time-dependent function adjusted to preserve the
conservation of the potential vorticity. Without this forcing,
kinematic models would not preserve potential vorticity.

6 Conclusions

In this work, we propose a simple kinematic model for study-
ing transport phenomena in the Antarctic polar vortex. We
are interested in gaining insights into the processes which
carry material outward from the vortex structure and inward
to the vortex structure.

The construction of the kinematic model is realized by
analysing geopotential height data produced by the ECMWF.
In particular, our focus is on the stratospheric sudden warm-
ing event that took place in 2002, producing the pinching and
then breaking of the stratospheric polar vortex. We identify
the prevalent Fourier components during this period, which
consist of a mean axisymmetric flow and waves with wave
numbers 1 and 2. The kinematic model is based on analytical
expressions which recover the spatial structures of these rep-
resentative Fourier components. The model can be controlled
so that waves with wave numbers 1 and 2 can be switched on
and off independently. We are also able to adjust the relative

position of the waves with respect to the mean axisymmetric
flow.

The study of Lagrangian transport phenomena in the ERA-
Interim reanalysis data by means of Lagrangian descriptors
highlights hyperbolic trajectories. These trajectories are La-
grangian objects “seeding” the observed filamentation phe-
nomena. The Lagrangian study of the kinematic model sheds
light on the role played by waves in this regard. The model is
adjusted to a stationary case which considers a mean flow and
a stationary wave 2 that perturbs the mean flow in its outer
part, producing hyperbolic trajectories. For the stationary
case, hyperbolic trajectories are easily identified. This frame-
work is modified by transforming it to a time-dependent
problem by making the wave phase speed different from zero
or by introducing time-dependent amplitudes. This allows to
relate the time-dependent structures with those easily identi-
fied in the stationary case. The setting is repeated with wave
1 and both wave 1 and wave 2 together. The joint presence of
these waves produces complex Lagrangian patterns remark-
ably similar to those observed from the analysis of the com-
plex reanalysis data and confirms the findings discussed by
Guha et al. (2016). Further adjustment of some model pa-
rameters is able to produce erosion by means of filaments
just in the interior part of the flow. Finally, we point out that
our analysis shows that the breaking and splitting of the polar
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vortex is justified in our model by the sudden growth of wave
2 and the decay of the axisymmetric flow.

Data availability. The data used in this work are described in
Sect. 2.1, where links are also provided to the official websites from
which they have been downloaded.
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