24 research outputs found

    Experimental evaluation of Interference Alignment under imperfect channel state information

    Get PDF
    Interference Alignment (IA) has been revealed as one of the most attractive transmission techniques for the K-user interference channel. In this work, we employ a multiuser Multiple-Input Multiple-Output (MIMO) testbed to analyze, in realistic indoor scenarios, the impact of channel state information errors on the sum-rate performance of IA. We restrict our study to a 3-user interference network in which each user transmits a single data stream using two transmit and two receive antennas. For this MIMO interference network, only two different IA solutions exist. We also evaluate the performance gain obtained in practice by using the IA solution that maximizes the sum-rate.This work has been funded by Xunta de Galicia, Ministerio de Ciencia e Innovación of Spain, and FEDER funds of the European Union under grants with numbers 10TIC003CT, 09TIC008105PR, TEC2010-19545-C04-01, TEC2010-19545-C04-03, AP2009-1105, AP2006-2965, and CSD2008-00010

    Interference alignment testbeds

    Get PDF
    Interference alignment has triggered high impact research in wireless communications since it was proposed nearly 10 years ago. However, the vast majority of research is centered on the theory of interference alignment and is hardly feasible in view of the existing state-of-the-art wireless technologies. Although several research groups have assessed the feasibility of interference alignment via testbed measurements in realistic environments, the experimental evaluation of interference alignment is still in its infancy since most of the experiments were limited to simpler scenarios and configurations. This article summarizes the practical limitations of experimentally evaluating interference alignment, provides an overview of the available interference alignment testbed implementations, including the costs, and highlights the imperatives for succeeding interference alignment testbed implementations. Finally, the article explores future research directions on the applications of interference alignment in the next generation wireless systems.Jacobo Fanjul's research has been supported by the Ministerio de Economía y Competitividad (MINECO) of Spain, under grants TEC2013-47141-C4-R (RACHEL project) and FPI grant BES-2014-069786. José A. García-Naya's research has been funded by the Xunta de Galicia (ED431C 2016–045, ED341D R2016/012, E0431 G/01), the Agencia Estatal de Investigación of Spain (TEC2013-47141-C4-1-R, TEC2015-69648-REOC, TEC2016-75067-C4-1-R), and ERDF funds of the EU (AEI/FEDER, UE). Hamed Farhadi's research has been funded by the Swedish Research Council (VR) under grant 2015–00500

    An experimental evaluation of broadband spatial IA for uncoordinated MIMO-OFDM systems

    Get PDF
    In this paper we present an experimental study on the performance of spatial Interference Alignment (IA) in broadband indoor wireless local area network scenarios that use Orthogonal Frequency Division Multiplexing (OFDM) according to the IEEE 802.11a physical-layer specifications. Experiments have been carried out using a wireless network testbed made up of six nodes equipped with Multiple-Input Multiple-Output (MIMO) radio interfaces. This setup allows the implementation of a 3-user MIMO interference channel. We have implemented different IA decoding schemes that operate either before or after the Fast Fourier Transform block. IA has been experimentally evaluated comparing both approaches to analyze its performance in synchronous and asynchronous transmissions. Our results indicate that spatial IA performs satisfactorily in practical broadband indoor scenarios in which wireless channels often exhibit relatively large coherence times.This work has been supported by the MINECO of Spain and Feder funds of the E.U. under grants CSD2008-00010 (COMONSENS project), TEC2013-47141-C4-R (RACHEL project) and FPU grant AP2010-21

    Experimental evaluation of flexible duplexing in multi-tier MIMO networks

    Get PDF
    In this paper, we present an experimental evaluation of the performance benefits provided by flexible duplexing, an access technique that allows uplink and downlink cells to coexist within the same time-frequency resource blocks. In order to replicate a wireless multi-tier network composed of 1 macro-cell and 2 small cells, a measurement campaign has been conducted using an indoor wireless testbed comprised of a total of 6 multiple-input multiple-output (MIMO) software-defined radio (SDR) devices. Since each cell has a single active user, each uplink/downlink configuration can be identified with a different interference channel, over which interference alignment (IA) is used as an inter-cell interference management technique and compared to other existing methods. The obtained results show that flexible duplexing clearly outperforms the conventional time-division duplex (TDD) access approach, where all cells operate synchronized either in uplink or dowlink mode. Additionally, interference alignment consistently provides better results in most of the interference regimes when compared to minimum means quare error (MMSE)-based schemes. The impact of channel estimate quality on the different communication strategies is also studied. It is worth highlighting that the presented over-the-air (OTA) experiments represent the first implementation of IA with real-time precoding and decoding.The work of Jacobo Fanjul, Jesús Ibáñez and Ignacio Santamaria has been supported by the Ministerio de Economía, Industria y Competitividad (MINECO) of Spain, and AEI/FEDER funds of the E.U., under grant TEC2016-75067-C4-4-R (CARMEN), grant PID2019-104958RB-C43 (ADELE), and FPI grant BES-2014-069786. The work of José A. García-Naya has been funded by the Xunta de Galicia (ED431G2019/01), the Agencia Estatal de Investigación of Spain (TEC2016-75067-C4-1-R, RED2018-102668-T), and ERDF funds of the E.U. (AEI/FEDER, UE)

    A comparative study of STBC transmissions at 2.4 GHz over indoor channels using a 2 × 2 MIMO testbed

    Get PDF
    In this paper we employ a 2×2 Multiple-Input Multiple-Output (MIMO) hardware platform to evaluate, in realistic indoor scenarios, the performance of different space-time block coded (STBC) transmissions at 2.4GHz. In particular, we focus on the Alamouti orthogonal scheme considering two types of channel state information (CSI) estimation: a conventional pilot-aided supervised technique and a recently proposed blind method based on second-order statistics (SOS). For comparison purposes, we also evaluate the performance of a Differential (non-coherent) space-time block coding (DSTBC). DSTBC schemes have the advantage of not requiring CSI estimation but they incur in a 3dB loss in performance. The hardware MIMO platform is based on high-performance signal acquisition and generation boards, each one equipped with a 1GB memory module that allows the transmission of extremely large data frames. Upconversion to RF is performed by two RF vector signal generators whereas downconversion is carried out with two custom circuits designed from commercial components. All the baseband signal processing is implemented off-line in MATLAB®, making the MIMO testbed very flexible and easily reconfigurable. Using this platform we compare the performance of the described methods in line-of-sight (LOS) and non-line-of-sight (NLOS) indoor scenarios.This work has been supported by Ministerio de Educación y Ciencia of Spain, Xunta de Galicia and FEDER funds of the European Union under grant numbers TEC2004-06451-C05-02, TEC2004-06451-C05-01, PGIDT05PXIC10502PN, and FPU grants AP2004-5127 and AP2006-2965

    Plataforma hardware para el desarrollo de sistemas MIMO

    Get PDF
    In this work we present a low-cost and flexible 2×2 MIMO testbed operating on the ISM band of 2.4 GHz with a total bandwith of 20 MHz. The transmitter and receiver baseband modules are PCs equipped with ADCs, DACs, memories, DSPs and FPGAs modules that allow a data transfer rate up to 200 MB/s per channel. Signals are generated at an IF of 15 MHz, upconverted to RF by two signal generators and downconverted to 15 MHz by means of two circuits specifically designed for this platform

    Broadband access in complex environments: LTE on railway

    Full text link
    This paper assesses the main challenges associated with the propagation and channel modeling of broadband radio systems in a complex environment of high speed and metropolitan railways. These challenges comprise practical simulation, modeling interferences, radio planning, test trials and performance evaluation in different railway scenarios using Long Term Evolution (LTE) as test case. This approach requires several steps; the first is the use of a radio propagation simulator based on ray-tracing techniques to accurately predict propagation. Besides the radio propagation simulator, a complete test bed has been constructed to assess LTE performance, channel propagation conditions and interference with other systems in real-world environments by means of standard-compliant LTE transmissions. Such measurement results allowed us to evaluate the propagation and performance of broadband signals and to test the suitability of LTE radio technology for complex railway scenarios

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore