91 research outputs found
Geodetic research studies Final technical report
Geopotential surface measurement of ocean using altimeter dat
Stellar explosion in the weak field approximation of the Brans-Dicke theory
We treat a very crude model of an exploding star, in the weak field
approximation of the Brans-Dicke theory, in a scenario that resembles some
characteristics data of a Type Ia Supernova. The most noticeable feature, in
the electromagnetic component, is the relationship between the absolute
magnitude at maximum brightness of the star and the decline rate in one
magnitude from that maximum. This characteristic has become one of the most
accurate method to measure luminosity distances to objects at cosmological
distances. An interesting result is that the active mass associated with the
scalar field is totally radiated to infinity, representing a mass loss in the
ratio of the "tensor" component to the scalar component of 1 to ( is the Brans-Dicke parameter), in agreement with a general result
of Hawking. Then, this model shows explicitly, in a dynamical case, the
mechanism of radiation of scalar field, which is necessary to understand the
Hawking result.Comment: 11 pages, no figures. Published in Class. Quantum Gravity V22 (2005
National Geodetic Satellite Program, Part II: Smithsonian Astrophysical Observatory
A sequence of advances in the determination of geodetic parameters presented by the Smithsonian Astrophysical Observatory are described. A Baker-Nunn photographic system was used in addition to a ruby-laser ranging system to obtain data for refinement of geodetic parameters. A summary of the data employed to: (1) derive coordinates for the locations of various tracking stations; and (2) determine the gravitational potential of the earth, is presented
Direct imaging of a massive dust cloud around R Coronae Borealis
We present recent polarimetric images of the highly variable star R CrB using
ExPo and archival WFPC2 images from the HST. We observed R CrB during its
current dramatic minimum where it decreased more than 9 mag due to the
formation of an obscuring dust cloud. Since the dust cloud is only in the
line-of-sight, it mimics a coronograph allowing the imaging of the star's
circumstellar environment. Our polarimetric observations surprisingly show
another scattering dust cloud at approximately 1.3" or 2000 AU from the star.
We find that to obtain a decrease in the stellar light of 9 mag and with 30% of
the light being reemitted at infrared wavelengths (from R CrB's SED) the grains
in R CrB's circumstellar environment must have a very low albedo of
approximately 0.07%. We show that the properties of the dust clouds formed
around R CrB are best fitted using a combination of two distinct populations of
grains size. The first are the extremely small 5 nm grains, formed in the low
density continuous wind, and the second population of large grains (~0.14
{\mu}m) which are found in the ejected dust clouds. The observed scattering
cloud, not only contains such large grains, but is exceptionally massive
compared to the average cloud.Comment: 8 pages, 7 figures published in A&
The Stony Brook / SMARTS Atlas of mostly Southern Novae
We introduce the Stony Brook / SMARTS Atlas of (mostly) Southern Novae. This
atlas contains both spectra and photometry obtained since 2003. The data
archived in this atlas will facilitate systematic studies of the nova
phenomenon and correlative studies with other comprehensive data sets. It will
also enable detailed investigations of individual objects. In making the data
public we hope to engender more interest on the part of the community in the
physics of novae. The atlas is on-line at
\url{http://www.astro.sunysb.edu/fwalter/SMARTS/NovaAtlas/} .Comment: 11 figures; 5 table
A Spectroscopic Study of Mass Outflows in the Interacting Binary RY Scuti
The massive interacting binary RY Scuti is an important representative of an
active mass-transferring system that is changing before our eyes and which may
be an example of the formation of a Wolf-Rayet star through tidal stripping.
Utilizing new and previously published spectra, we present examples of how a
number of illustrative absorption and emission features vary during the binary
orbit. We identify spectral features associated with each component, calculate
a new, double-lined spectroscopic binary orbit, and find masses of 7.1 +/- 1.2
M_sun for the bright supergiant and 30.0 +/- 2.1 M_sun for the hidden massive
companion. Through tomographic reconstruction of the component spectra from the
composite spectra, we confirm the O9.7 Ibpe spectral class of the bright
supergiant and discover a B0.5 I spectrum associated with the hidden massive
companion; however, we suggest that the latter is actually the spectrum of the
photosphere of the accretion torus immediately surrounding the massive
companion. We describe the complex nature of the mass loss flows from the
system in the context of recent hydrodynamical models for beta Lyr, leading us
to conclude RY Scuti has matter leaving the system in two ways: 1) a bipolar
outflow from winds generated by the hidden massive companion, and 2) mass from
the bright O9.7 Ibpe supergiant flowing from the region near the L2 point to
fill out a large, dense circumbinary disk. This circumbinary disk (radius ~ 1
AU) may feed the surrounding double-toroidal nebula (radius ~ 2000 AU).Comment: 41 pages with 7 tables and 11 figures, accepted to Ap
A Cepheid is No More: Hubble's Variable 19 in M33
We report on the remarkable evolution in the light curve of a variable star
discovered by Hubble (1926) in M33 and classified by him as a Cepheid. Early in
the 20th century, the variable, designated as V19, exhibited a 54.7 day period,
an intensity-weighted mean B magnitude of 19.59+/-0.23 mag, and a B amplitude
of 1.1 mag. Its position in the P-L plane was consistent with the relation
derived by Hubble from a total of 35 variables. Modern observations by the
DIRECT project show a dramatic change in the properties of V19: its mean B
magnitude has risen to 19.08 +/- 0.05 mag and its B amplitude has decreased to
less than 0.1 mag. V19 does not appear to be a classical (Population I) Cepheid
variable at present, and its nature remains a mystery. It is not clear how
frequent such objects are nor how often they could be mistaken for classical
Cepheids.Comment: Accepted for publication in the Astrophysical Journal Letters.
Finding charts and photometry data can be downloaded from
http://cfa-www.harvard.edu/~kstanek/DIRECT
Classical novae from the POINT-AGAPE microlensing survey of M31 -- I. The nova catalogue
The POINT-AGAPE survey is an optical search for gravitational microlensing
events towards the Andromeda Galaxy (M31). As well as microlensing, the survey
is sensitive to many different classes of variable stars and transients. Here
we describe the automated detection and selection pipeline used to identify M31
classical novae (CNe) and we present the resulting catalogue of 20 CN
candidates observed over three seasons. CNe are observed both in the bulge
region as well as over a wide area of the M31 disk. Nine of the CNe are caught
during the final rise phase and all are well sampled in at least two colours.
The excellent light-curve coverage has allowed us to detect and classify CNe
over a wide range of speed class, from very fast to very slow. Among the
light-curves is a moderately fast CN exhibiting entry into a deep transition
minimum, followed by its final decline. We have also observed in detail a very
slow CN which faded by only 0.01 mag day over a 150 day period. We
detect other interesting variable objects, including one of the longest period
and most luminous Mira variables. The CN catalogue constitutes a uniquely
well-sampled and objectively-selected data set with which to study the
statistical properties of classical novae in M31, such as the global nova rate,
the reliability of novae as standard-candle distance indicators and the
dependence of the nova population on stellar environment. The findings of this
statistical study will be reported in a follow-up paper.Comment: 21 pages, 13 figures, re-submitted for publication in MNRAS, typos
corrected, references updated, figures 5-9 made cleare
Kepler photometry of RRc stars: peculiar double-mode pulsations and period doubling
We present the analysis of four first overtone RR Lyrae stars observed with the Kepler space telescope, based on data obtained over nearly 2.5 yr. All four stars are found to be multiperiodic.
The strongest secondary mode with frequency f2 has an amplitude of a few mmag, 20–45 times lower than the main radial mode with frequency f1. The two oscillations have a period ratio of P2/P1 = 0.612–0.632 that cannot be reproduced by any two radial modes. Thus, the secondary mode is non-radial. Modes yielding similar period ratios have also recently been discovered in other variables of the RRc and RRd types. These objects form a homogenous group and constitute a new class of multimode RR Lyrae pulsators, analogous to a similar class of multimode classical Cepheids in the Magellanic Clouds. Because a secondary mode with P2/P1 ∼ 0.61 is found in almost every RRc and RRd star observed from space, this form of multiperiodicity must be common. In all four Kepler RRc stars studied, we find subharmonics of f2 at ∼1/2f2 and at ∼3/2f2. This is a signature of period doubling of the secondary oscillation, and is the first detection of period doubling in RRc stars. The amplitudes and phases of f2 and its subharmonics are variable on a time-scale of 10–200 d. The dominant radial mode also shows variations on the same time-scale, but with much smaller amplitude. In three Kepler RRc stars we detect additional periodicities, with amplitudes below 1 mmag, that must correspond to non-radial g-modes. Such modes never before have been observed in RR Lyrae variables
Nova light curves from the Solar Mass Ejection Imager (SMEI) - II. The extended catalogue
We present the results from observing nine Galactic novae in eruption with the Solar Mass Ejection Imager (SMEI) between 2004 and 2009. While many of these novae reached peak magnitudes that were either at or approaching the detection limits of SMEI, we were still able to produce light curves that in many cases contained more data at and around the initial rise, peak, and decline than those found in other variable star catalogs. For each nova, we obtained a peak time, maximum magnitude, and for several an estimate of the decline time (t2). Interestingly, although of lower quality than those found in Hounsell et al. (2010a), two of the light curves may indicate the presence of a pre-maximum halt. In addition the high cadence of the SMEI instrument has allowed the detection of low amplitude variations in at least one of the nova light curves
- …