26 research outputs found
High Frequency Cluster Radio Galaxies: Luminosity Functions and Implications for SZE Selected Cluster Samples
We study the overdensity of point sources in the direction of X-ray-selected
galaxy clusters from the Meta-Catalog of X-ray detected Clusters of galaxies
(MCXC; ) at South Pole Telescope (SPT) and Sydney
University Molonglo Sky Survey (SUMSS) frequencies. Flux densities at 95, 150
and 220 GHz are extracted from the 2500 deg SPT-SZ survey maps at the
locations of SUMSS sources, producing a multi-frequency catalog of radio
galaxies. In the direction of massive galaxy clusters, the radio galaxy flux
densities at 95 and 150 GHz are biased low by the cluster Sunyaev-Zel'dovich
Effect (SZE) signal, which is negative at these frequencies. We employ a
cluster SZE model to remove the expected flux bias and then study these
corrected source catalogs. We find that the high frequency radio galaxies are
centrally concentrated within the clusters and that their luminosity functions
(LFs) exhibit amplitudes that are characteristically an order of magnitude
lower than the cluster LF at 843 MHz. We use the 150 GHz LF to estimate the
impact of cluster radio galaxies on an SPT-SZ like survey. The radio galaxy
flux typically produces a small bias on the SZE signal and has negligible
impact on the observed scatter in the SZE mass-observable relation. If we
assume there is no redshift evolution in the radio galaxy LF then
percent of the clusters would be lost from the sample. Allowing for redshift
evolution of the form increases the incompleteness to
percent. Improved constraints on the evolution of the cluster radio galaxy LF
require a larger cluster sample extending to higher redshift.Comment: Submitted to MNRA
Detection of Enhancement in Number Densities of Background Galaxies due to Magnification by Massive Galaxy Clusters
We present a detection of the enhancement in the number densities of
background galaxies induced from lensing magnification and use it to test the
Sunyaev-Zel'dovich effect (SZE) inferred masses in a sample of 19 galaxy
clusters with median redshift selected from the South Pole
Telescope SPT-SZ survey. Two background galaxy populations are selected for
this study through their photometric colours; they have median redshifts
(low- background) and
(high- background). Stacking these
populations, we detect the magnification bias effect at and
for the low- and high- backgrounds, respectively. We fit NFW
models simultaneously to all observed magnification bias profiles to estimate
the multiplicative factor that describes the ratio of the weak lensing
mass to the mass inferred from the SZE observable-mass relation. We further
quantify systematic uncertainties in resulting from the photometric
noise and bias, the cluster galaxy contamination and the estimations of the
background properties. The resulting for the combined background
populations with uncertainties is
, indicating good consistency
between the lensing and the SZE-inferred masses. We use our best-fit to
predict the weak lensing shear profiles and compare these predictions with
observations, showing agreement between the magnification and shear mass
constraints. This work demonstrates the promise of using the magnification as a
complementary method to estimate cluster masses in large surveys.Comment: 16 pages, 10 figures, accepted for publication in MNRA
Mass Calibration and Cosmological Analysis of the SPT-SZ Galaxy Cluster Sample Using Velocity Dispersion and X-ray Measurements
We present a velocity dispersion-based mass calibration of the South Pole
Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample.
Using a homogeneously selected sample of 100 cluster candidates from 720 deg2
of the survey along with 63 velocity dispersion () and 16 X-ray Yx
measurements of sample clusters, we simultaneously calibrate the
mass-observable relation and constrain cosmological parameters. The
calibrations using and Yx are consistent at the level,
with the calibration preferring ~16% higher masses. We use the full
cluster dataset to measure . The
SPT cluster abundance is lower than preferred by either the WMAP9 or
Planck+WMAP9 polarization (WP) data, but assuming the sum of the neutrino
masses is eV, we find the datasets to be consistent at the
1.0 level for WMAP9 and 1.5 for Planck+WP. Allowing for larger
further reconciles the results. When we combine the cluster and
Planck+WP datasets with BAO and SNIa, the preferred cluster masses are
higher than the Yx calibration and higher than the
calibration. Given the scale of these shifts (~44% and ~23% in mass,
respectively), we execute a goodness of fit test; it reveals no tension,
indicating that the best-fit model provides an adequate description of the
data. Using the multi-probe dataset, we measure and
. Within a CDM model we find eV. We present a consistency test of the cosmic growth rate.
Allowing both the growth index and the dark energy equation of state
parameter to vary, we find and ,
demonstrating that the expansion and the growth histories are consistent with a
LCDM model ().Comment: Accepted by ApJ (v2 is accepted version); 17 pages, 6 figure
Constraints on the CMB Temperature Evolution using Multi-Band Measurements of the Sunyaev Zel'dovich Effect with the South Pole Telescope
The adiabatic evolution of the temperature of the cosmic microwave background
(CMB) is a key prediction of standard cosmology. We study deviations from the
expected adiabatic evolution of the CMB temperature of the form using measurements of the spectrum of the Sunyaev
Zel'dovich Effect with the South Pole Telescope (SPT). We present a method for
using the ratio of the Sunyaev Zel'dovich signal measured at 95 and 150 GHz in
the SPT data to constrain the temperature of the CMB. We demonstrate that this
approach provides unbiased results using mock observations of clusters from a
new set of hydrodynamical simulations. We apply this method to a sample of 158
SPT-selected clusters, spanning the redshift range , and
measure , consistent with the standard model
prediction of . In combination with other published results, we
constrain , an improvement of over
published constraints. This measurement also provides a strong constraint on
the effective equation of state in models of decaying dark energy
.Comment: Submitted to MNRAS Letter
Analysis of Sunyaev-Zel'dovich Effect Mass-Observable Relations using South Pole Telescope Observations of an X-ray Selected Sample of Low Mass Galaxy Clusters and Groups
(Abridged) We use 95, 150, and 220GHz observations from the SPT to examine
the SZE signatures of a sample of 46 X-ray selected groups and clusters drawn
from ~6 deg^2 of the XMM-BCS. These systems extend to redshift z=1.02, have
characteristic masses ~3x lower than clusters detected directly in the SPT data
and probe the SZE signal to the lowest X-ray luminosities (>10^42 erg s^-1)
yet.
We develop an analysis tool that combines the SZE information for the full
ensemble of X-ray-selected clusters. Using X-ray luminosity as a mass proxy, we
extract selection-bias corrected constraints on the SZE significance- and
Y_500-mass relations. The SZE significance- mass relation is in good agreement
with an extrapolation of the relation obtained from high mass clusters.
However, the fit to the Y_500-mass relation at low masses, while in good
agreement with the extrapolation from high mass SPT clusters, is in tension at
2.8 sigma with the constraints from the Planck sample. We examine the tension
with the Planck relation, discussing sample differences and biases that could
contribute.
We also present an analysis of the radio galaxy point source population in
this ensemble of X-ray selected systems. We find 18 of our systems have 843 MHz
SUMSS sources within 2 arcmin of the X-ray centre, and three of these are also
detected at significance >4 by SPT. Of these three, two are associated with the
group brightest cluster galaxies, and the third is likely an unassociated
quasar candidate. We examine the impact of these point sources on our SZE
scaling relation analyses and find no evidence of biases. We also examine the
impact of dusty galaxies using constraints from the 220 GHz data. The stacked
sample provides 2.8 significant evidence of dusty galaxy flux, which
would correspond to an average underestimate of the SPT Y_500 signal that is
(17+-9) per cent in this sample of low mass systems.Comment: 15 pages, 7 figure
The DES Science Verification weak lensing shear catalogues
We present weak lensing shear catalogues for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogues of 2.12 million and 3.44 million galaxies, respectively. We detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. We also discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogues for the full 5-yr DES, which is expected to cover 5000 square degrees
The DES Science Verification weak lensing shear catalogues
We present weak lensing shear catalogues for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogues of 2.12 million and 3.44 million galaxies respectively. We detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. We also discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogues for the full 5-year DES, which is expected to cover 5000 square degrees
Cosmology from cosmic shear with Dark Energy Survey science verification data
We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3% of the full DES survey area. Using cosmic shear 2-point measurements over three redshift bins we find sigma8(Omegam/0.3 )0.5=0.81 ±0.06 (68% confidence), after marginalizing over 7 systematics parameters and 3 other cosmological parameters. We examine the robustness of our results to the choice of data vector and systematics assumed, and find them to be stable. About 20% of our error bar comes from marginalizing over shear and photometric redshift calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS are mildly discrepant with the cosmological constraints from Planck CMB data; our results are consistent with both data sets. Our uncertainties are ˜30 % larger than those from CFHTLenS when we carry out a comparable analysis of the two data sets, which we attribute largely to the lower number density of our shear catalogue. We investigate constraints on dark energy and find that, with this small fraction of the full survey, the DES SV constraints make negligible impact on the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of sigma8(Omegam/0.3 )0.5 is present regardless of the value of w
Optical–SZE scaling relations for DES optically selected clusters within the SPT-SZ survey
We study the Sunyaev–Zel'dovich effect (SZE) signature in South Pole Telescope (SPT) data for an ensemble of 719 optically identified galaxy clusters selected from 124.6 deg² of the Dark Energy Survey (DES) science verification data, detecting a clear stacked SZE signal down to richness λ ∼ 20. The SZE signature is measured using matched-filtered maps of the 2500 deg2 SPT-SZ survey at the positions of the DES clusters, and the degeneracy between SZE observable and matched-filter size is broken by adopting as priors SZE and optical mass–observable relations that are either calibrated using SPT-selected clusters or through the Arnaud et al. (A10) X-ray analysis. We measure the SPT signal-to-noise ζ–λ relation and two integrated Compton-yY500–λ relations for the DES-selected clusters and compare these to model expectations that account for the SZE–optical centre offset distribution. For clusters with λ > 80, the two SPT-calibrated scaling relations are consistent with the measurements, while for the A10-calibrated relation the measured SZE signal is smaller by a factor of 0.61 ± 0.12 compared to the prediction. For clusters at 20 < λ < 80, the measured SZE signal is smaller by a factor of ∼0.20–0.80 (between 2.3σ and 10σ significance) compared to the prediction, with the SPT-calibrated scaling relations and larger λ clusters showing generally better agreement. We quantify the required corrections to achieve consistency, showing that there is a richness-dependent bias that can be explained by some combination of (1) contamination of the observables and (2) biases in the estimated halo masses. We also discuss particular physical effects associated with these biases, such as contamination of λ from line-of-sight projections or of the SZE observables from point sources, larger offsets in the SZE-optical centring or larger intrinsic scatter in the λ–mass relation at lower richnesses
Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing
We present photometric redshift estimates for galaxies used in the weak
lensing analysis of the Dark Energy Survey Science Verification (DES SV) data.
Four model- or machine learning-based photometric redshift methods -- ANNZ2,
BPZ calibrated against BCC-Ufig simulations, SkyNet, and TPZ -- are analysed.
For training, calibration, and testing of these methods, we construct a
catalogue of spectroscopically confirmed galaxies matched against DES SV data.
The performance of the methods is evaluated against the matched spectroscopic
catalogue, focusing on metrics relevant for weak lensing analyses, with
additional validation against COSMOS photo-zs. From the galaxies in the DES SV
shear catalogue, which have mean redshift over the range
, we construct three tomographic bins with means of . These bins each have systematic uncertainties
in the mean of the fiducial SkyNet photo-z . We propagate the errors in
the redshift distributions through to their impact on cosmological parameters
estimated with cosmic shear, and find that they cause shifts in the value of
of approx. 3%. This shift is within the one sigma statistical errors
on for the DES SV shear catalog. We further study the potential
impact of systematic differences on the critical surface density,
, finding levels of bias safely less than the
statistical power of DES SV data. We recommend a final Gaussian prior for the
photo-z bias in the mean of of width for each of the three
tomographic bins, and show that this is a sufficient bias model for the
corresponding cosmology analysis.Comment: high-resolution versions of figures can be downloaded from
http://deswl.github.i