4 research outputs found

    VBQ-Net: A Novel Vectorization-Based Boost Quantized Network Model for Maximizing the Security Level of IoT System to Prevent Intrusions

    No full text
    Data sharing with additional devices across wireless networks is made simple and advantageous by the Internet of Things (IoT), an emerging technology. However, IoT systems are more susceptible to cyberattacks because of their continued growth and technological advances, which could lead to powerful assaults. An intrusion detection system is one of the key defense mechanisms for information and communications technology. The primary shortcomings that plague current IoT security frameworks are their inability to detect intrusions properly, their substantial latency, and their prolonged processing time and delay. Therefore, this work develops a clever and innovative security architecture called Vectorization-Based Boost Quantized Network (VBQ-Net) for protecting IoT networks. Here, a Vector Space Bag of Words (VSBW) methodology is used to reduce the dimensionality of features and identify a key characteristic from the featured data. In addition, a brand-new classification technique, called Boosted Variance Quantization Neural Networks (BVQNNs), is used to classify the different types of intrusions using a weighted feature matrix. A Multi-Hunting Reptile Search Optimization (MH-RSO) algorithm is employed during categorization to calculate the probability value for selecting the right choices while anticipating intrusions. In this study, the most well-known and current datasets, such as IoTID-20, IoT-23, and CIDDS-001, are used to validate and evaluate the effectiveness of the proposed methodology. By evaluating the proposed approach on standard IoT datasets, the study seeks to address the limitations of current IoT security frameworks and provide a more effective defense mechanism against cyberattacks on IoT systems

    Biometric-Based Human Identification Using Ensemble-Based Technique and ECG Signals

    No full text
    User authentication has become necessary in different life domains. Traditional authentication methods like personal information numbers (PINs), password ID cards, and tokens are vulnerable to attacks. For secure authentication, methods like biometrics have been developed in the past. Biometric information is hard to lose, forget, duplicate, or share because it is a part of the human body. Many authentication methods focused on electrocardiogram (ECG) signals have achieved great success. In this paper, we have developed cardiac biometrics for human identification using a deep learning (DL) approach. Cardiac biometric systems rely on cardiac signals that are captured using the electrocardiogram (ECG), photoplethysmogram (PPG), and phonocardiogram (PCG). This study utilizes the ECG as a biometric modality because ECG signals are a superior choice for accurate, secure, and reliable biometric-based human identification systems, setting them apart from PPG and PCG approaches. To get better performance in terms of accuracy and computational time, we have developed an ensemble approach based on VGG16 pre-trained transfer learning (TL) and Long Short-Term Memory (LSTM) architectures to optimize features. To develop this authentication system, we have fine-tuned this ensemble network. In the first phase, we preprocessed the ECG biosignal to remove noise. In the second phase, we converted the 1-D ECG signals into a 2-D spectrogram image using a transformation phase. Next, the feature extraction step is performed on spectrogram images using the proposed ensemble DL technique, and finally, those features are identified by the boosting machine learning classifier to recognize humans. Several experiments were performed on the selected dataset, and on average, the proposed system achieved 98.7% accuracy, 98.01% precision, 97.1% recall, and 0.98 AUC. In this paper, we have compared the developed approach with state-of-the-art biometric authentication systems. The experimental results demonstrate that our proposed system outperformed the human recognition competition

    DR-NASNet: Automated System to Detect and Classify Diabetic Retinopathy Severity Using Improved Pretrained NASNet Model

    No full text
    Diabetes is a widely spread disease that significantly affects people’s lives. The leading cause is uncontrolled levels of blood glucose, which develop eye defects over time, including Diabetic Retinopathy (DR), which results in severe visual loss. The primary factor causing blindness is considered to be DR in diabetic patients. DR treatment tries to control the disease’s severity, as it is irreversible. The primary goal of this effort is to create a reliable method for automatically detecting the severity of DR. This paper proposes a new automated system (DR-NASNet) to detect and classify DR severity using an improved pretrained NASNet Model. To develop the DR-NASNet system, we first utilized a preprocessing technique that takes advantage of Ben Graham and CLAHE to lessen noise, emphasize lesions, and ultimately improve DR classification performance. Taking into account the imbalance between classes in the dataset, data augmentation procedures were conducted to control overfitting. Next, we have integrated dense blocks into the NASNet architecture to improve the effectiveness of classification results for five severity levels of DR. In practice, the DR-NASNet model achieves state-of-the-art results with a smaller model size and lower complexity. To test the performance of the DR-NASNet system, a combination of various datasets is used in this paper. To learn effective features from DR images, we used a pretrained model on the dataset. The last step is to put the image into one of five categories: No DR, Mild, Moderate, Proliferate, or Severe. To carry this out, the classifier layer of a linear SVM with a linear activation function must be added. The DR-NASNet system was tested using six different experiments. The system achieves 96.05% accuracy with the challenging DR dataset. The results and comparisons demonstrate that the DR-NASNet system improves a model’s performance and learning ability. As a result, the DR-NASNet system provides assistance to ophthalmologists by describing an effective system for classifying early-stage levels of DR

    Pullulan: A novel molecule for biomedical applications

    No full text
    corecore