48 research outputs found

    Mitochondria and G-quadruplex evolution: an intertwined relationship

    Get PDF
    G-quadruplexes (G4s) are non-canonical structures formed in guanine (G)-rich sequences through stacked G tetrads by Hoogsteen hydrogen bonding. Several studies have demonstrated the existence of G4s in the genome of various organisms, including humans, and have proposed that G4s have a regulatory role in various cellular functions. However, little is known regarding the dissemination of G4s in mitochondria. In this review, we report the observation that the number of potential G4-forming sequences in the mitochondrial genome increases with the evolutionary complexity of different species, suggesting that G4s have a beneficial role in higher-order organisms. We also discuss the possible function of G4s in mitochondrial (mt)DNA and long noncoding (lnc)RNA and their role in various biological processes

    ASSESSING THE IMPACT ON PEFR AMONG SMOKERS AND PASSIVE SMOKERS–A COMPARATIVE STUDY

    Get PDF
    Objective: The purpose of this study was to monitor the intensity and difference in Peak Expiratory Flow Rate (PEFR) between smokers and passive smokers. Methods: A total of 1000 participants were enrolled in two groups as smokers and passive smokers who are living closely with smokers. Their PEFR values were measured with Wright’s mini peak flow meter. The influence of smoking on the lung function among smokers and passive smokers were assessed with a suitable statistical test. Results: Among the study participants, most of the smokers were in the age group of 31 to 60 and 31 to 50 in passive smokers. Based on the lung function smokers (31%) and passive smokers (19.2%) were in the red zone, PEFR was decreased in both smokers as well as passive smokers, and the magnitude of decline was higher in passive smoking elderly individuals. The impact of passive smoking was significantly observed in all the categories of smoking history they are living with. Conclusion: Smokers and passive smokers have equally deleterious effects on PEFR. Where passive smoking emerged as the main variable to influence airway obstruction in smokers that caused a greater reduction in PEFR

    Nano–bio interaction between human immunoglobulin G and nontoxic, near-infrared emitting water-borne silicon quantum dot micelles

    Get PDF
    In recent years, the field of nanomaterials has exponentially expanded with versatile biological applications. However, one of the roadblocks to their clinical translation is the critical knowledge gap about how the nanomaterials interact with the biological microenvironment (nano–bio interactions). When nanomaterials are used as drug carriers or contrast agents for biological imaging, the nano–bio interaction-mediated protein conformational changes and misfolding could lead to disease-related molecular alterations and/or cell death. Here, we studied the conformation changes of human immunoglobulin G (IgG) upon interaction with silicon quantum dots functionalized with 1-decene, Pluronic-F127 (SiQD-De/F127 micelles) using UV-visible, fluorescence steady state and excited state kinetics, circular dichroism, and molecular modeling. Decene monolayer terminated SiQDs are accumulated inside the Pluronic F127 shells to form SiQD-De/F127 micelles and were shown to bind strongly with IgG. In addition, biological evaluation studies in cell lines (HeLa, Fibroblast) and medaka fish (eggs and larvae) showed enhanced uptake and minimal cytotoxicity. Our results substantiate that engineered QDs obviating the protein conformational changes could have adept bioefficacy

    A synthetic small molecule for rapid induction of multiple pluripotency genes in mouse embryonic fibroblasts.

    Get PDF
    Cellular reprogramming involves profound alterations in genome-wide gene expression that is precisely controlled by a hypothetical epigenetic code. Small molecules have been shown to artificially induce epigenetic modifications in a sequence independent manner. Recently, we showed that specific DNA binding hairpin pyrrole-imidazole polyamides (PIPs) could be conjugated with chromatin modifying histone deacetylase inhibitors like SAHA to epigenetically activate certain pluripotent genes in mouse fibroblasts. In our steadfast progress to improve the efficiency of SAHA-PIPs, we identified a novel compound termed, δ that could dramatically induce the endogenous expression of Oct-3/4 and Nanog. Genome-wide gene analysis suggests that in just 24 h and at nM concentration, δ induced multiple pluripotency-associated genes including Rex1 and Cdh1 by more than ten-fold. δ treated MEFs also rapidly overcame the rate-limiting step of epithelial transition in cellular reprogramming by switching "[Formula: see text]" the complex transcriptional gene network

    Advancing small-molecule-based chemical biology with next-generation sequencing technologies

    Get PDF
    Next-generation-sequencing (NGS) technologies enable us to obtain extensive information by deciphering millions of individual DNA sequencing reactions simultaneously. The new DNA-sequencing strategies exceed their precursors in output by many orders of magnitude, resulting in a quantitative increase in valuable sequence information that could be harnessed for qualitative analysis. Sequencing on this scale has facilitated significant advances in diverse disciplines, ranging from the discovery, design, and evaluation of many small molecules and relevant biological mechanisms to maturation of personalized therapies. NGS technologies that have recently become affordable allow us to gain in-depth insight into small-molecule-triggered biological phenomena and empower researchers to develop advanced versions of small molecules. In this review we focus on the overlooked implications of NGS technologies in chemical biology, with a special emphasis on small-molecule development and screening

    A Synthetic Transcriptional Activator of Genes Associated with the Retina in Human Dermal Fibroblasts.

    Get PDF
    Small molecules capable of modulating epigenetic signatures can activate the transcription of tissue-restricted genes in a totally unrelated cell type and have potential use in epigenetic therapy. To provide an example for an initial approach, we report here on one synthetic small-molecule compound-termed "SAHA-PIP X"-from our library of conjugates. This compound triggered histone acetylation accompanied by the transcription of retinal-tissue-related genes in human dermal fibroblasts (HDFs)

    MOFs for next-generation cancer therapeutics through a biophysical approach—a review

    Get PDF
    Metal-organic frameworks (MOFs) have emerged as promising nanocarriers for cancer treatment due to their unique properties. Featuring high porosity, extensive surface area, chemical stability, and good biocompatibility, MOFs are ideal for efficient drug delivery, targeted therapy, and controlled release. They can be designed to target specific cellular organelles to disrupt metabolic processes in cancer cells. Additionally, functionalization with enzymes mimics their catalytic activity, enhancing photodynamic therapy and overcoming apoptosis resistance in cancer cells. The controllable and regular structure of MOFs, along with their tumor microenvironment responsiveness, make them promising nanocarriers for anticancer drugs. These carriers can effectively deliver a wide range of drugs with improved bioavailability, controlled release rate, and targeted delivery efficiency compared to alternatives. In this article, we review both experimental and computational studies focusing on the interaction between MOFs and drug, explicating the release mechanisms and stability in physiological conditions. Notably, we explore the relationship between MOF structure and its ability to damage cancer cells, elucidating why MOFs are excellent candidates for bio-applicability. By understanding the problem and exploring potential solutions, this review provides insights into the future directions for harnessing the full potential of MOFs, ultimately leading to improved therapeutic outcomes in cancer treatment

    An informatics approach to distinguish RNA modifications in nanopore direct RNA sequencing

    Get PDF
    Reading RNA modifications more precisely in a pocket-sized device. 京都大学プレスリリース. 2022-08-24.Modifications in RNA can influence their structure, function, and stability and play essential roles in gene expression and regulation. Methods to detect RNA modifications rely on biophysical techniques such as chromatography or mass spectrometry, which are low throughput, or on high throughput short-read sequencing techniques based on selectively reactive chemical probes. Recent studies have utilized nanopore-based fourth-generation sequencing methods to detect modifications by directly sequencing RNA in its native state. However, these approaches are based on modification-associated mismatch errors that are liable to be confounded by SNPs. Also, there is a need to generate matched knockout controls for reference, which is laborious. In this work, we introduce an internal comparison strategy termed “IndoC, ” where features such as ‘trace’ and ‘current signal intensity’ of potentially modified sites are compared to similar sequence contexts on the same RNA molecule within the sample, alleviating the need for matched knockout controls. We first show that in an IVT model, ‘trace’ is able to distinguish between artificially generated SNPs and true pseudouridine (Ψ) modifications, both of which display highly similar mismatch profiles. We then apply IndoC on yeast and human ribosomal RNA to demonstrate that previously reported Ψ sites show marked changes in their trace and signal intensity profiles compared with their unmodified counterparts in the same dataset. Finally, we perform direct RNA sequencing of RNA containing Ψ intact with a chemical probe adduct (N-cyclohexyl-N′-β-(4-methylmorpholinium) ethylcarbodiimide [CMC]) and show that CMC reactivity also induces changes in trace and signal intensity distributions in a Ψ specific manner, allowing their separation from high mismatch sites that display SNP-like behavior

    Global, regional, and national burden of neurological disorders during 1990-2015 : a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Comparable data on the global and country-specific burden of neurological disorders and their trends are crucial for health-care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study provides such information but does not routinely aggregate results that are of interest to clinicians specialising in neurological conditions. In this systematic analysis, we quantified the global disease burden due to neurological disorders in 2015 and its relationship with country development level. Methods We estimated global and country-specific prevalence, mortality, disability-adjusted life-years (DALYs), years of life lost (YLLs), and years lived with disability (YLDs) for various neurological disorders that in the GBD classification have been previously spread across multiple disease groupings. The more inclusive grouping of neurological disorders included stroke, meningitis, encephalitis, tetanus, Alzheimer's disease and other dementias, Parkinson's disease, epilepsy, multiple sclerosis, motor neuron disease, migraine, tension-type headache, medication overuse headache, brain and nervous system cancers, and a residual category of other neurological disorders. We also analysed results based on the Socio-demographic Index (SDI), a compound measure of income per capita, education, and fertility, to identify patterns associated with development and how countries fare against expected outcomes relative to their level of development. Findings Neurological disorders ranked as the leading cause group of DALYs in 2015 (250.7 [95% uncertainty interval (UI) 229.1 to 274.7] million, comprising 10.2% of global DALYs) and the second-leading cause group of deaths (9.4 [9.1 to 9.7] million], comprising 16.8% of global deaths). The most prevalent neurological disorders were tensiontype headache (1505 9 [UI 1337.3 to 1681.6 million cases]), migraine (958.8 [872.1 to 1055.6] million), medication overuse headache (58.5 [50.8 to 67.4 million]), and Alzheimer's disease and other dementias (46.0 [40.2 to 52.7 million]). Between 1990 and 2015, the number of deaths from neurological disorders increased by 36.7%, and the number of DALYs by 7.4%. These increases occurred despite decreases in age-standardised rates of death and DALYs of 26.1% and 29.7%, respectively; stroke and communicable neurological disorders were responsible for most of these decreases. Communicable neurological disorders were the largest cause of DALYs in countries with low SDI. Stroke rates were highest at middle levels of SDI and lowest at the highest SDI. Most of the changes in DALY rates of neurological disorders with development were driven by changes in YLLs. Interpretation Neurological disorders are an important cause of disability and death worldwide. Globally, the burden of neurological disorders has increased substantially over the past 25 years because of expanding population numbers and ageing, despite substantial decreases in mortality rates from stroke and communicable neurological disorders. The number of patients who will need care by clinicians with expertise in neurological conditions will continue to grow in coming decades. Policy makers and health-care providers should be aware of these trends to provide adequate services.Peer reviewe

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
    corecore