15 research outputs found

    A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications

    Get PDF
    The development of bulk, three-dimensional (3D), macroporous polymers with high permeability, large surface area and large volume is highly desirable for a range of applications in the biomedical, biotechnological and environmental areas. The experimental techniques currently used are limited to the production of small size and volume cryogel material. In this work we propose a novel, versatile, simple and reproducible method for the synthesis of large volume porous polymer hydrogels by cryogelation. By controlling the freezing process of the reagent/polymer solution, large-scale 3D macroporous gels with wide interconnected pores (up to 200??m in diameter) and large accessible surface area have been synthesized. For the first time, macroporous gels (of up to 400?ml bulk volume) with controlled porous structure were manufactured, with potential for scale up to much larger gel dimensions. This method can be used for production of novel 3D multi-component macroporous composite materials with a uniform distribution of embedded particles. The proposed method provides better control of freezing conditions and thus overcomes existing drawbacks limiting production of large gel-based devices and matrices. The proposed method could serve as a new design concept for functional 3D macroporous gels and composites preparation for biomedical, biotechnological and environmental applications

    Using chondroitin sulfate to improve the viability and biosynthesis of chondrocytes encapsulated in interpenetrating network (IPN) hydrogels of agarose and poly(ethylene glycol) diacrylate

    Get PDF
    We recently introduced agarose-poly(ethylene glycol) diacrylate (PEGDA) interpenetrating network (IPN) hydrogels to cartilage tissue engineering that were able to encapsulate viable cells and provide a significant improvement in mechanical performance relative to its two constituent hydrogels. The goal of the current study was to develop a novel synthesis protocol to incorporate methacrylated chondroitin sulfate (MCS) into the IPN design hypothesized to improve cell viability and biosynthesis. The IPN was formed by encapsulating porcine chondrocytes in agarose, soaking the construct in a solution of 1:10 MCS:PEGDA, which was then photopolymerized to form a copolymer network as the second network. The IPN with incorporated CS (CS-IPN) (~0.5 wt%) resulted in a 4- to 5-fold increase in the compressive elastic modulus relative to either the PEGDA or agarose gels. After 6 weeks of in vitro culture, more than 50% of the encapsulated chondrocytes remained viable within the CS-modified IPN, in contrast to 35% viability observed in the unmodified. At week 6, the CS-IPN had significantly higher normalized GAG contents (347 ± 34 µg/µg) than unmodified IPNs (158 ± 27 µg/µg, P < 0.05). Overall, the approach of incorporating biopolymers such as CS from native tissue may provide favorable micro-environment and beneficial signals to cells to enhance their overall performance in IPNs

    Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin protective antigen

    Get PDF
    Polymeric cryogels are efficient carriers for the immobilization of biomolecules because of their unique macroporous structure, permeability, mechanical stability and different surface chemical functionalities. The aim of the study was to demonstrate the potential use of macroporous monolithic cryogels for biotoxin removal using anthrax toxin protective antigen (PA), the central cell-binding component of the anthrax exotoxins, and covalent immobilization of monoclonal antibodies. The affinity ligand (protein A) was chemically coupled to the reactive hydroxyl and epoxy-derivatized monolithic cryogels and the binding efficiencies of protein A, monoclonal antibodies to the cryogel column were determined. Our results show differences in the binding capacity of protein A as well as monoclonal antibodies to the cryogel adsorbents caused by ligand concentrations, physical properties and morphology of surface matrices. The cytotoxicity potential of the cryogels was determined by an in vitro viability assay using V79 lung fibroblast as a model cell and the results reveal that the cryogels are non-cytotoxic. Finally, the adsorptive capacities of PA from phosphate buffered saline (PBS) were evaluated towards a non-glycosylated, plant-derived human monoclonal antibody (PANG) and a glycosylated human monoclonal antibody (Valortim®), both of which were covalently attached via protein A immobilization. Optimal binding capacities of 108 and 117 mg/g of antibody to the adsorbent were observed for PANG attached poly(acrylamide-allyl glycidyl ether) [poly(AAm-AGE)] and Valortim® attached poly(AAm-AGE) cryogels, respectively, This indicated that glycosylation status of Valortim® antibody could significantly increase (8%) its binding capacity relative to the PANG antibody on poly(AAm-AGE)-protien-A column (p < 0.05). The amounts of PA which remained in the solution after passing PA spiked PBS through PANG or Valortim bound poly(AAm-AGE) cryogel were significantly (p < 0.05) decreased relative to the amount of PA remained in the solution after passing through unmodified as well as protein A modified poly(AAm-AGE) cryogel columns, indicates efficient PA removal from spiked PBS over 60 min of circulation. The high adsorption capacity towards anthrax toxin PA of the cryogel adsorbents indicated potential application of these materials for treatment of Bacillus anthracis infection

    The bioactivity of agarose-PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan

    Get PDF
    Our previous reports of interpenetrating networks (IPNs) have demonstrated drastic improvements in mechanical performance relative to individual constituent networks while maintaining viability of encapsulated cells. The current study investigated whether covalent linkage of RGD to the poly(ethylene glycol) diacrylate (PEGDA) network could improve upon cell viability and performance of agarose-PEGDA IPNs compared to unmodified IPNs (control) and to IPNs with different concentrations of physically entrapped aggrecan, providing a point of comparison to previous work. The inclusion of RGD or aggrecan generally did not adversely affect mechanical performance, and significantly improved chondrocyte viability and performance. Although both 4 and 100 μ g/mL of aggrecan improved cell viability, only 100 μ g/mL aggrecan was clearly beneficial to improving biosynthesis, whereas 100 μg/mL of RGD was beneficial to both chondrocyte viability and biosynthesis. Interestingly, clustering of cells within the IPNs with RGD and the higher aggrecan concentration were observed, likely indicating cell migration and/or preferred regional proliferation. This clustering resulted in a clearly visible enhancement of matrix production compared to the other IPNs. With this cell migration, we also observed significant cell proliferation and matrix synthesis beyond the periphery of the IPN, which could have important implications in facilitating integration with surrounding cartilage in vivo. With RGD and aggrecan (at its higher concentration) providing substantial and comparable improvements in cell performance, RGD would be the recommended bioactive signal for this particular IPN formulation and cell source given the significant cost savings and potentially more straightforward regulatory pathway in commercialization

    Enhanced trophic factor secretion by mesenchymal stem/stromal cells with Glycine-Histidine-Lysine (GHK)-modified alginate hydrogels

    No full text
    Recombinant proteins and cytokines are under broad preclinical and clinical investigation to promote angiogenesis, but their success is limited by ineffective delivery, lack of long-term stability and excessive cost. Mesenchymal stem/stromal cells (MSC) secrete bioactive trophic factors, and thus, may provide an effective alternative to address these challenges. Glycine-Histidine-Lysine (GHK) is a peptide fragment of osteonectin, a matricellular protein with reported proangiogenic potential. We examined the capacity of GHK to up-regulate secretion of proangiogenic factors from human MSC in culture and when covalently coupled to alginate hydrogels. GHK had no apparent cytotoxic effects on MSC in culture over a wide range of concentrations. We detected a dose-dependent increase in vascular endothelial growth factor (VEGF) concentration in media conditioned by GHK-treated MSC, which increased endothelial cell proliferation, migration and tubule formation. We covalently coupled GHK to alginate using carbodiimide chemistry, and human MSC were entrapped in alginate hydrogels to assess VEGF secretion. Similar to monolayer culture, MSC responded to GHK-modified gels by secreting increased concentrations of VEGF and basic fibroblast growth factor compared to unmodified gels. The pre-treatment of MSC with antibodies to α6 and β1 integrins prior to entrapment in GHK-modified gels abrogated VEGF secretion, suggesting that the proangiogenic response of MSC was integrin-mediated. These data demonstrate that the proangiogenic potential of MSC can be significantly increased by the presentation of GHK with a biodegradable carrier, therefore increasing their clinical potential when used for tissue repair

    Hierarchically Designed Agarose and Poly(Ethylene Glycol) Interpenetrating Network Hydrogels for Cartilage Tissue Engineering

    No full text
    A new method for encapsulating cells in interpenetrating network (IPN) hydrogels of superior mechanical integrity was developed. In this study, two biocompatible materials—agarose and poly(ethylene glycol) (PEG) diacrylate—were combined to create a new IPN hydrogel with greatly enhanced mechanical performance. Unconfined compression of hydrogel samples revealed that the IPN displayed a fourfold increase in shear modulus relative to a pure PEG-diacrylate network (39.9 vs. 9.9 kPa) and a 4.9-fold increase relative to a pure agarose network (8.2 kPa). PEG and IPN compressive failure strains were found to be 71% ± 17% and 74% ± 17%, respectively, while pure agarose gels failed around 15% strain. Similar mechanical property improvements were seen when IPNs-encapsulated chondrocytes, and LIVE/DEAD cell viability assays demonstrated that cells survived the IPN encapsulation process. The majority of IPN-encapsulated chondrocytes remained viable 1 week postencapsulation, and chondrocytes exhibited glycosaminoglycan synthesis comparable to that of agarose-encapsulated chondrocytes at 3 weeks postencapsulation. The introduction of a new method for encapsulating cells in a hydrogel with enhanced mechanical performance is a promising step toward cartilage defect repair. This method can be applied to fabricate a broad variety of cell-based IPNs by varying monomers and polymers in type and concentration and by adding functional groups such as degradable sequences or cell adhesion groups. Further, this technology may be applicable in other cell-based applications where mechanical integrity of cell-containing hydrogels is of great importance
    corecore