789 research outputs found

    VIP: Finding Important People in Images

    Full text link
    People preserve memories of events such as birthdays, weddings, or vacations by capturing photos, often depicting groups of people. Invariably, some individuals in the image are more important than others given the context of the event. This paper analyzes the concept of the importance of individuals in group photographs. We address two specific questions -- Given an image, who are the most important individuals in it? Given multiple images of a person, which image depicts the person in the most important role? We introduce a measure of importance of people in images and investigate the correlation between importance and visual saliency. We find that not only can we automatically predict the importance of people from purely visual cues, incorporating this predicted importance results in significant improvement in applications such as im2text (generating sentences that describe images of groups of people)

    Unexpected evolutionary proximity of eukaryotic and cyanobacterial enzymes responsible for biosynthesis of retinoic acid and its oxidation

    Get PDF
    Biosynthesis of retinoic acid from retinaldehyde (retinal) is catalysed by an aldehyde dehydrogenase (ALDH) and its oxidation by cytochrome P450 enzymes (CYPs). Herein we show by phylogenetic analysis that the ALDHs and CYPs in the retinoic acid pathway in animals are much closer in evolutionary terms to cyanobacterial orthologs than would be expected from the standard models of evolution

    The Magnitude-Size Relation of Galaxies out to z ~ 1

    Full text link
    As part of the Deep Extragalactic Evolutionary Probe (DEEP) survey, a sample of 190 field galaxies (I_{814} <= 23.5) in the ``Groth Survey Strip'' has been used to analyze the magnitude-size relation over the range 0.1 < z < 1.1. The survey is statistically complete to this magnitude limit. All galaxies have photometric structural parameters, including bulge fractions (B/T), from Hubble Space Telescope images, and spectroscopic redshifts from the Keck Telescope. The analysis includes a determination of the survey selection function in the magnitude-size plane as a function of redshift, which mainly drops faint galaxies at large distances. Our results suggest that selection effects play a very important role. A first analysis treats disk-dominated galaxies with B/T < 0.5. If selection effects are ignored, the mean disk surface brightness (averaged over all galaxies) increases by ~1.3 mag from z = 0.1 to 0.9. However, most of this change is plausibly due to comparing low luminosity galaxies in nearby redshift bins to high luminosity galaxies in distant bins. If this effect is allowed for, no discernible evolution remains in the disk surface brightness of bright (M_B < -19) disk-dominated galaxies. A second analysis treats all galaxies by substituting half-light radius for disk scale length, with similar conclusions. Indeed, at all redshifts, the bulk of galaxies is consistent with the magnitude-size envelope of local galaxies, i.e., with little or no evolution in surface brightness. In the two highest redshift bins (z > 0.7), a handful of luminous, high surface brightness galaxies appears that occupies a region of the magnitude-size plane rarely populated by local galaxies. Their wide range of colors and bulge fractions points to a variety of possible origins.Comment: 19 pages, 12 figures. Accepted for publication in the Astrophysical Journa

    Assessing the vulnerability of plant functional trait strategies to climate change

    Get PDF
    Aim: Our ability to understand how species may respond to changing climate conditions is hampered by a lack of high-quality data on the adaptive capacity of species. Plant functional traits are linked to many aspects of species life history and adaptation to environment, with different combinations of trait values reflecting alternate strategies for adapting to varied conditions. If the realized climate limits of species can be partially explained by plant functional trait combinations, then a new approach of using trait combinations to predict the expected climate limits of species trait combinations may offer considerable benefits. Location: Australia. Time period: Current and future. Methods: Using trait data for leaf size, seed mass and plant height for 6,747 Australian native species from 27 plant families, we model the expected climate limits of trait combinations and use future climate scenarios to estimate climate change impacts based on plant functional trait strategies. Results: Functional trait combinations were a significant predictor of species climate niche metrics with potentially meaningful relationships with two rainfall variables (R2 =.36 &amp;.45) and three temperature variables (R2 =.21,.28,.30). Using this method, the proportion of species exposed to conditions across their range that are beyond the expected climate limits of their trait strategies will increase under climate change. Main conclusions: Our new approach, called trait strategy vulnerability, includes three new metrics. For example, the climate change vulnerability (CCV) metric identified a small but important proportion of species (4.3%) that will on average be exposed to conditions beyond their expected limits for summer temperature in the future. These potentially vulnerable species could be high priority targets for deeper assessment of adaptive capacity at the genomic or physiological level. Our methods can be applied to any suite of co-occurring plants globally

    Nanoscale mosaicity revealed in peptide microcrystals by scanning electron nanodiffraction.

    Get PDF
    Changes in lattice structure across sub-regions of protein crystals are challenging to assess when relying on whole crystal measurements. Because of this difficulty, macromolecular structure determination from protein micro and nanocrystals requires assumptions of bulk crystallinity and domain block substructure. Here we map lattice structure across micron size areas of cryogenically preserved three-dimensional peptide crystals using a nano-focused electron beam. This approach produces diffraction from as few as 1500 molecules in a crystal, is sensitive to crystal thickness and three-dimensional lattice orientation. Real-space maps reconstructed from unsupervised classification of diffraction patterns across a crystal reveal regions of crystal order/disorder and three-dimensional lattice tilts on the sub-100nm scale. The nanoscale lattice reorientation observed in the micron-sized peptide crystal lattices studied here provides a direct view of their plasticity. Knowledge of these features facilitates an improved understanding of peptide assemblies that could aid in the determination of structures from nano- and microcrystals by single or serial crystal electron diffraction

    Molecular brakes regulating mTORC1 activation in skeletal muscle following synergist ablation

    Get PDF
    The goal of the current work was to profile positive (mTORC1 activation, autocrine/paracrine growth factors) and negative [AMPK, unfolded protein response (UPR)] pathways that might regulate overload-induced mTORC1 (mTOR complex 1) activation with the hypothesis that a number of negative regulators of mTORC1 will be engaged during a supraphysiological model of hypertrophy. To achieve this, mTORC1- IRS-1/2 signaling, BiP/CHOP/IRE1, and AMPK activation were determined in rat plantaris muscle following synergist ablation (SA). SA resulted in significant increases in muscle mass of 4% per day throughout the 21 days of the experiment. The expression of the insulin-like growth factors (IGF) were high throughout the 21st day of overload. However, IGF signaling was limited, since IRS-1 and -2 were undetectable in the overloaded muscle from day 3 to day 9. The decreases in IRS-1/2 protein were paralleled by increases in GRB10 Ser501/503 and S6K1 Thr389 phosphorylation, two mTORC1 targets that can destabilize IRS proteins. PKB Ser473 phosphorylation was higher from 3&ndash; 6 days, and this was associated with increased TSC2 Thr939 phosphorylation. The phosphorylation of TSC2 Thr1345 (an AMPK site) was also elevated, whereas phosphorylation at the other PKB site, Thr1462, was unchanged at 6 days. In agreement with the phosphorylation of Thr1345, SA led to activation of AMPK1 during the initial growth phase, lasting the first 9 days before returning to baseline by day 12. The UPR markers CHOP and BiP were elevated over the first 12 days following ablation, whereas IRE1 levels decreased. These data suggest that during supraphysiological muscle loading at least three potential molecular brakes engage to downregulate mTORC1. m

    The chronology and tectonic style of landscape evolution along the elevated Atlantic continental margin of South Africa resolved by joint apatite fission track and (U-Th-Sm)/He thermochronology

    Get PDF
    Atlantic-type continental margins have long been considered “passive” tectonic settings throughout the entire postrift phase. Recent studies question the long-term stability of these margins and have shown that postrift uplift and reactivation of preexisting structures may be a common feature of a continental margin’s evolution. The Namaqualand sector of the western continental margin of South Africa is characterized by a ubiquitously faulted basement but lacks preservation of younger geological strata to constrain postrift tectonic fault activity. Here we present the first systematic study using joint apatite fission track and apatite (U-Th-Sm)/He thermochronology to achieve a better understanding on the chronology and tectonic style of landscape evolution across this region. Apatite fission track ages range from 58.3 ± 2.6 to 132.2 ± 3.6Ma, with mean track lengths between 10.9 ± 0.19 and 14.35 ± 0.22 μm, and mean (U-Th-Sm)/He sample ages range from 55.8 ± 31.3 to 120.6 ± 31.4Ma. Joint inverse modeling of these data reveals two distinct episodes of cooling at approximately 150–130Ma and 110–90Ma with limited cooling during the Cenozoic. Estimates of denudation based on these thermal histories predict approximately 1–3 km of denudation coinciding with two major tectonic events. The first event, during the Early Cretaceous, was driven by continental rifting and the development and removal of synrift topography. The second event, during the Late Cretaceous, includes localized reactivation of basement structures as well as regional mantle-driven uplift. Relative tectonic stability prevailed during the Cenozoic, and regional denudation over this time is constrained to be less than 1 km

    Targeted transperineal biopsy of the prostate has limited additional benefit over background cores for larger MRI-identified tumors.

    Get PDF
    PURPOSE: To compare histological outcomes in patients undergoing MRI-transrectal ultrasound fusion transperineal (MTTP) prostate biopsy and determine the incremental benefit of targeted cores. METHODS: Seventy-six consecutive patients with 89 MRI-identified targets underwent MTTP biopsy. Separate targeted biopsies and background cores were obtained according to a standardized protocol. Target biopsies were considered of added diagnostic value if these cores showed a higher Gleason grade than non-targeted cores taken from the same sector (Group 1, n = 41). Conversely, where background cores demonstrated an equal or higher Gleason grade, target cores were considered to be non-beneficial (Group 2, n = 48). RESULTS: There was no significant difference in age, PSA, prostate volume, time-to-biopsy, and number of cores obtained between the groups. A greater proportion of target cores were positive for cancer (158/228; 69.3 %) compared to background (344/1881; 18.38 %). The median target volume was 0.54 cm(3) for Group 1 (range 0.09-2.79 cm(3)) and 1.65 cm(3) for Group 2 (0.3-9.07 cm(3)), p 1.0 cm.The authors acknowledge research support from Cancer Research UK, National Institute of Health Research Cambridge Biomedical Research Centre, Cancer Research UK and the Engineering and Physical Sciences Research Council Imaging Centre in Cambridge and Manchester and the Cambridge Experimental Cancer Medicine Centre.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00345-015-1650-

    Endocrine responses and acute mTOR pathway phosphorylation to resistance exercise with leucine and whey

    Get PDF
    Leucine ingestion reportedly activates the mTOR pathway in skeletal muscle, contributing to a hypertrophy response. The purpose of the study was to compare the post-resistance exercise effects of leucine and whey protein supplementation on endocrine responses and muscle mTOR pathway phosphorylation. On visit 1, subjects (X±SD; n=20; age=27.8±2.8yrs) provided baseline blood samples for analysis of cortisol, glucose and insulin; a muscle biopsy of the vastus lateralis muscle to assess mTOR signaling pathway phosphorylation; and were tested for maximum strength on the leg press and leg extension exercises. For visits 2 and 3, subjects were randomized in a double-blind crossover design to ingest either leucine and whey protein (10g+10g; supplement) or a non-caloric placebo. During these visits, 5 sets of 10 repetitions were performed on both exercises, immediately followed by ingestion of the supplement or placebo. Blood was sampled 30 min post-, and a muscle biopsy 45 min post-exercise. Western blots quantified total and phosphorylated proteins. Insulin increased (α<.05) with supplementation with no change in glucose compared to placebo. Relative phosphorylation of AKT and rpS6 were greater with leucine and whey supplementation compared to placebo. Supplementation of leucine and whey protein immediately after heavy resistance exercise increases anabolic signaling in human skeletal muscle
    corecore