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Abstract
Aim: Our ability to understand how species may respond to changing climate condi-
tions is hampered by a lack of high-quality data on the adaptive capacity of species. 
Plant functional traits are linked to many aspects of species life history and adapta-
tion to environment, with different combinations of trait values reflecting alternate 
strategies for adapting to varied conditions. If the realized climate limits of species can 
be partially explained by plant functional trait combinations, then a new approach of 
using trait combinations to predict the expected climate limits of species trait combi-
nations may offer considerable benefits.
Location: Australia.
Time period: Current and future.
Methods: Using trait data for leaf size, seed mass and plant height for 6,747 Australian 
native species from 27 plant families, we model the expected climate limits of trait 
combinations and use future climate scenarios to estimate climate change impacts 
based on plant functional trait strategies.
Results: Functional trait combinations were a significant predictor of species climate 
niche metrics with potentially meaningful relationships with two rainfall variables 
(R2 = .36 & .45) and three temperature variables (R2 = .21, .28, .30). Using this method, 
the proportion of species exposed to conditions across their range that are beyond 
the expected climate limits of their trait strategies will increase under climate change.
Main conclusions: Our new approach, called trait strategy vulnerability, includes three 
new metrics. For example, the climate change vulnerability (CCV) metric identified a 
small but important proportion of species (4.3%) that will on average be exposed to 
conditions beyond their expected limits for summer temperature in the future. These 
potentially vulnerable species could be high priority targets for deeper assessment of 
adaptive capacity at the genomic or physiological level. Our methods can be applied 
to any suite of co-occurring plants globally.

K E Y W O R D S
Australian plants, future climates, hierarchical GAMM, life history traits, plant communities, 
threatened species
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1  |  INTRODUC TION

Preventing the loss of biodiversity and the degradation of eco-
systems is an urgent challenge for scientists and governments 
(Bergstrom et  al.,  2021; Díaz et  al.,  2019). The impacts of climate 
change are already being felt and timely action is needed to help pro-
tect the most vulnerable species (Coleman & Bragg, 2021; Coleman 
et  al.,  2020). The proactive management of species vulnerable to 
climate change should result in improved conservation outcomes 
(Drechsler et  al.,  2011). Therefore, methods for assessing biodi-
versity to identify potentially vulnerable species for pre-emptive 
monitoring and management are essential in a world with abundant 
diversity and limited resources for conservation.

Climate change is perhaps the most challenging anthropogenic 
threat to manage given the global scale of its impact, the uncer-
tainty around future climate projections, and the unknown capacity 
of species and ecosystems to adapt (Hoffmann & Sgrò, 2011). Yet, 
pre-emptive assessments of species vulnerability to climate change 
will help to focus conservation management and could also be used 
to improve our ability to forecast secondary extinctions after the 
loss of vulnerable species, due to knock-on effects upon ecosystem 
function (Foden et al., 2019). A number of methods exist to assess 
species vulnerability, with each approach having different advan-
tages and limitations for their varied data types and methodologies. 
For example, species distribution modelling (SDM) has been exten-
sively applied to estimate climate change exposure to novel condi-
tions and shifting species distributions, for large numbers of species 
(Austin, 2002; Renner & Warton, 2013). However, standard SDMs 
do not account for factors such as species interactions, population 
dynamics or the capacity of species to tolerate or adapt to condi-
tions beyond their realized climate niche (Davis et al., 1998).

In contrast, SDM approaches have been developed that incor-
porate aspects of species adaptive capacity by harnessing informa-
tion on physiological limits, phenotypic plasticity, trait heritability 
and dispersal ability (Bush et al., 2016; Catullo et al., 2015). These 
approaches are undoubtably more comprehensive than traditional 
SDMs and should in principle provide more accurate estimates of 
the impacts of climate change. However, accurate parameteriza-
tion of plasticity and heritability requires well-designed experi-
ments with robust sample sizes (Kellermann et al., 2012). Detailed 
measurements of adaptive capacity have only been undertaken for 
a small number of species. Adaptive capacity could potentially be 
estimated for species using functional traits and phylogenetic infor-
mation, because these attributes are associated with parameters of 
species responses to their environment (Catullo et al., 2015).

Measurements of functional traits that capture variation in 
species life history strategies could provide an alternative to di-
rect measures of adaptive capacity in terms of species fundamental 
climate limits. There are already a number of trait-based SDM ap-
proaches that use clinal variation and plasticity in functional traits 
to estimate species capacity to adapt to varied climates (as syn-
thesized by Garzón et  al., 2019). However, one limitation of some 
trait-based SDM approaches is they require trait data from across 

the species distribution, which will not be available for most spe-
cies. Additionally, methods for assessing species vulnerability based 
on exposure to threats, the sensitivity of the ecological system and 
the adaptive capacity of the target species (Foden et al., 2019) have 
also been expanded to use functional trait data. These methods 
often require categorization based on human decision making and 
assumptions about interactions between traits and environments, 
and about the suitability of combination of traits in different envi-
ronments (Gallagher et al., 2021).

Many plant functional traits show marked geographic variation, 
suggesting they reflect adaptation of species to site climate and 
soil properties (Lamont et  al.,  2005; Moles et  al.,  2014; Westoby 
et  al.,  2002; Wright et  al.,  2017). Used in combination, functional 
traits can summarize plant life history strategies that are crucial 
to species survival and competitiveness in different environments 
(Díaz et al., 2016; Westoby, 1998). Here, we use information from 
the correlations between functional trait combinations and the real-
ized climate limits of species to estimate the expected climate limits 
of the varied trait strategies of plants. With this method we turn the 
normal approach of explaining variation in functional traits with cli-
mate on its head and use functional traits to predict suitable climate 
ranges for these trait strategies.

If the viability of plant functional trait combinations can be in-
fluenced by climate (Dwyer & Laughlin, 2017), then statistical rela-
tionships between realized climate limits and trait strategies could 
be used to assess how well species are suited to their local environ-
ment, based on their traits. Species with potentially vulnerable trait 
strategies could be identified by finding outlier species that have a 
realized climate niche that is not correlated with the climate niche 
of related species with similar trait strategies. Alternatively, species 
with restricted climate niches that have similar trait combinations to 
more broadly distributed species, would have an estimated climate 
range that is broader than their current/realized range. How well a 
species’ functional traits match its realized climate limits could also 
be combined with other surrogate measures of adaptive capacity, 
such as population size, genetic diversity, range size and environ-
mental niche width (Razgour et al., 2018). Species with potentially 
vulnerable trait strategies should be the focus of further investiga-
tion to better understand their capacity to tolerate climate change.

Here we use generalized additive models (GAMs) to assess if the 
current climate niche of species covaries with their functional trait 
strategies, so that outlier species whose trait strategies do not match 
their current climate limits can be identified. We expect that we 
can identify plant species that are potentially vulnerable to climate 
change using readily accessible data, including functional traits, oc-
currence data, habitat condition, climate data and future climate 
projections. We test our approach using Australian plant species 
because this continent includes a broad range of climates and there 
is good coverage for both functional traits and spatial occurrence 
data (Andrew et al., 2021). We focus on three traits that have clear 
functional significance and are available for a large proportion of 
species in the flora: maximum height at maturity, leaf area and seed 
mass (Westoby, 1998). We present a method developed to work for 
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1196  |    ANDREW et al.

a large proportion of plant species but flexible enough to use differ-
ent combinations of functional traits or environmental variables. We 
also aimed to explore if using traits in combination can prove more 
informative than when assessed individually. We use the modelled 
climate limits of species trait strategies to calculate species level vul-
nerability metrics (Figure 1). In addition, vulnerability metrics were 
also calculated per locality (10 km × 10 km grid cell) for local species 
to identify locations that have a high proportion of species with trait 
strategies that are expected to be poorly adapted to current and fu-
ture climates. Creating a continuum from which we can identify the 
outlier species and localities with the greatest differences between 
their observed and predicted climate niche, allowing potentially 
vulnerable species and localities to be identified for further assess-
ment, using this data driven method. The overall approach proposed 
here can be referred to as trait strategy vulnerability. Finally, we ex-
plore how trait strategies vary between species that were assessed 
to have high versus low vulnerability to climate change.

2  |  METHODS

Figure  1 provides a schematic of the analytical steps described 
below for the trait strategy vulnerability approach. Our overarch-
ing goals were to: (a) describe the functional trait combinations 
– based on height (m), leaf area (mm2) and seed mass (mg) – ex-
hibited by a subset of species in the Australian flora; (b) apply, a 
novel modelling approach for this field by using functional trait 
combinations as the predictor variable to assess how the realized 
average climate conditions and climatic limits of species change 
across functional trait space; and (c) project which species may 
experience climate conditions outside those currently occupied by 
their functional strategies by 2070. The analysis focuses on native 
Australian plant species included in the Australian Plant Census 
(APC). Only accepted species in the APC that are not naturalized 
(or naturalized outside their native Australian range) were retained 
for analysis (as defined by APC data from: https://biodi​versi​ty.org.

F I G U R E  1  The analytical framework for calculating species level vulnerability metrics. The inputs are shown on the left-hand side of 
the figure and the order of the steps is shown with arrows starting at the top left. The trait, climate and occurrence data are combined 
to model species predicted climate limits, which were used to obtain preferred climate ranges based on confidence intervals around 
predictions ( E

[

Nik

]

+ 1.96 × � ‼

Nik

). Distance to current climate (DCC) and distance to future climate (DFC) were calculated for species 
predicted distributions and separately for plant assemblages using all species expected at localities. For location average DCC and DFC 
calculations n represents species number and i would represent each locality. The DCC and DFC distance metrics were calculated using the 
predicted limits extreme confidence interval (predicted limit + or –1.96 × standard error) to account for variability around predictions that 
could represent a broader or narrow range of climates occupied by species in different areas of trait space. Species predicted distributions 
were used to calculate area of occurrence and also combined with current climate layers to calculate climate niche breadth. See full details of 
vulnerability metrics in Methods section. PCA = principal components analysis
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    |  1197ANDREW et al.

au/nsl/servi​ces/expor​t/index). All non-vascular plants were also 
excluded.

2.1  |  Distribution data

Input occurrence data were overlaid with climate layers to extract 
climate data for each species’ realized climate niche. Occurrence 
data were downloaded from the Atlas of Living Australia (ALA) in 
2020 and cleaned to remove records with obvious spatial errors 
and taxonomic issues. Only occurrences with herbarium specimens 
that were of non-cultivated origin were retained (c. 2.9 million oc-
currence records from 22,062 species out of the c. 25,000 listed 
native Australian species). Species distribution models (SDMs) 
produced for these species, using the same occurrence data were 
used in later stages (see details for SDMs in Andrew et al., 2021). 
In brief, species distributions were modelled using three methods, 
to ensure analyses were based on the likely full distribution of spe-
cies, including areas not represented in herbarium collections. For 
taxa with greater than 10 occurrence records (n = 17,479 species), 
cleaned occurrence data were combined with climate and soil vari-
ables in Poisson point process modelling (Renner et al., 2015). For 
3,044 taxa with 3–9 occurrences, range bagging was used, which 
is a machine learning method that uses an ensemble of convex 
hulls created from a reduced set of niche parameters and refined 
via bootstrap aggregation, or bagging (Drake, 2015). A final set of 
1,539 species with 1–2 occurrences had their area of occupancy 
mapped using known occurrences within each 10  km  ×  10  km 
grid cell. These modelled distributions were used for generating 
vulnerability metrics for each species. The SDM outputs and all 
climate layers used the same resolution (10 × 10 km) and were con-
verted to the Lambert azimuthal equal-area projection. Data from 
modelled distributions were also used to identify a list of species 
likely to be present in each 10 km × 10 km grid cells (herein, called 
local species lists). All species names follow the Australian Plant 
Census (APC).

2.2  |  Climate variables

Our expectation was that the realized/current climate limits of 
species will covary with their functional trait strategies. To test 
this idea, we extracted the average climate conditions and upper/
lower climate limits for each species by intersecting occurrence re-
cords (latitude-longitude coordinates of herbarium specimens) with 
WorldClim climate layers (Fick & Hijmans, 2017). We focus on three 
current climate limits across species occurrences (summer maximum 
temperature at the hottest location, winter minimum temperature 
at the coldest location, and annual rainfall at the driest location) and 
two average climate niche values (average annual temperature and 
average annual precipitation across species occurrences). These cli-
mate metrics focus on temperature and water availability because 
these environmental factors are very important to plant function 

and are likely to show the most rapid change in the near future. 
For the current climate limits across each species distribution, we 
use the locality with the highest value for Maximum Temperature 
of Warmest Month (BIO5) hence referred to as ‘summer maximum’, 
the locality with the lowest value for Minimum Temperature of 
the Coldest Month (BIO6) hence ‘winter minimum’, and the local-
ity with the lowest value for Annual Precipitation (BIO12) hence 
‘rainfall minimum’. For climate average metrics for each species, the 
average across all localities with occurrence records was taken for 
Mean Annual Temperature (BIO1) hence ‘average temperature’, and 
Annual Precipitation (BIO12) hence ‘average rainfall’. Annual precipi-
tation was loge transformed for all analyses.

We used the output of the SDMs to calculate species area of oc-
currence (A) and climate niche breadth (B) for deriving vulnerability 
metrics. For A, the number of 10 km × 10 km equal area grid cells 
(hence referred to as ‘localities’) expected to be occupied by each 
species was summed. The area of each grid cell was adjusted based 
on the estimated habitat condition, from the Australian Habitat 
Condition Assessment System: HCAS (Harwood et al., 2016), that is, 
a cell with condition of .5 contributes only 50% of the 100 km2 area 
to A because the condition value represents the capacity for sup-
porting the native species occurring originally in each location. For 
climate niche breadth, the difference between the localities with the 
highest and lowest values was calculated for each climate variable.

Gridded outputs from five Global Change models (GCMs), for 
the four WorldClim layers (BIO1, BIO5, BIO6 and BIO12), were used 
as estimated projections of future climate: ACCESS1.0, CESM1-
CAM5, GFDL-ESM2M, HadGEM2-CC and MIROC5. All models 
used Representative Concentration Pathway (RCP) 8.5 for years 
2061–2080 and were accessed via the CHELSA climate data repos-
itory (Karger et  al.,  2017, 2018). These five models were selected 
based on recommendations from the Climate Change in Australia 
website (https://www.clima​techa​ngein​austr​alia.gov.au/en/suppo​
rt-and-guida​nce/faqs/eight​-clima​te-model​s-data/), because they 
are representative for Australia and cover a range of scenarios (e.g. 
the GFDL-ESM2M model has a hotter and drier projection than the 
MIROC5 model that has lower warming and increased precipitation). 
We report the mean response across the five GCMs for each climate 
variable.

2.3  |  Plant functional trait data

All trait values were sourced from the AusTraits database (Falster 
et  al.,  2021, version 3.0.1). We accessed data on plant height 
(n = 14,749 species), leaf area (n = 3,806) and seed mass (n = 8,822), 
as well as leaf length (n = 12,127), leaf width (n = 11,689) and seed 
length (n = 7,115). Leaf and seed dimensions were used to gap fill leaf 
area and seed mass, respectively (see details below). Where species 
had multiple values for the same trait, the maximum value was used 
for height, while a mean value was used for leaf area, length and 
width and for seed mass and length. Averaging was conducted with 
plyr in the statistical software environment R version 3.6.1 (R Core 
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Team, 2016). The natural log was taken for all traits before taking 
species maximums or averages.

Leaf area was estimated from length and width measurements 
using a linear mixed model (LMM) with leaf length and leaf width as 
fixed effects and taxonomic family as a random factor interacting 
with leaf length so random factor levels had independent intercepts 
and slopes, using lme4 (Bates et al., 2015). Seed mass was similarly 
estimated from a separate LMM that used seed length (fixed effect) 
with an interaction with taxonomic family (see details in supplemen-
tary R code and also described in Andrew et al., 2021). Estimated 
leaf area and seed mass values were only used to fill missing values in 
the original matrix. After combining the estimated values, the num-
ber of species with trait data increased for leaf area (n = 11,990 spe-
cies) and seed mass (n = 11,905 species) up from 3,806 and 8,822, 
respectively.

2.4  |  Modelling climate of trait strategies

The ‘trait space’ occupied by all species combined was projected 
into two dimensions using principal components analysis (PCA), 
following the methods presented in Díaz et  al.  (2016). The PCA 
was performed with the princomp() function in R using the options 
‘cor = TRUE’ and ‘scores = TRUE’. We particularly wanted to work 
with traits in combination by using ordination because there is a 
large potential to explore how species that are similar for one trait 
might predictably occupy different climates based on other traits. 
The first two PCA coordinates of each species in trait space were 
used to quantify the average functional trait strategy for each spe-
cies. To model how the realized climate limits and climate averages 
of species covaried with trait space we used generalized additive 
models (GAMs) with the gam() function from the mgcv package 
(Wood, 2017). GAMs were conducted separately for each of the 
five climate dependent variables. A thin plate spline smoother was 
used by fitting an interaction between the axes of PC1 and PC2 
(Wood, 2003). The models were hierarchical GAMs with random 
factor levels for families. After combining PCA results with climate 
data only families with more than 50 species with trait data (n = 27 
families) were included to avoid modelling families with limited 
sample size. For these 27 families 6,747 species had trait data for 
all three traits as well as spatial distribution data. The random fac-
tor levels for each family had individual smoothers that had inde-
pendent shapes but fixed wiggliness penalizing terms across all 
levels (global smoother plus group-level smoothers method, see 
Pedersen et  al.,  2019). This model structure allowed the native 
plant families that differ from the overall global trend to be ad-
justed for. Prediction of the expected climate limits and climate 
averages of each species’ functional trait strategy was done using 
the predict() function (Wood, 2017). The standard errors around 
these predicted values for species were also obtained from the 
posterior distribution of the model coefficients.

To assess how well the predictions of expected climate limits 
of plant functional trait strategies match the climate that species 

currently occupy in the landscape, all localities across each species’ 
distribution were compared to the expected climate values for the 
trait strategy of the species. For this mapping task, the SDM predic-
tions of species current distributions were used for a more consis-
tent representation of species expected occurrences in areas with 
low sampling effort. Comparisons between the expected climate 
limits of functional trait strategies and species realized climate range 
led to the development of several new metrics described below. 
These metrics aim to rank species by how well the expected climate 
range of their trait strategies matches the climates they do or might 
experience. The first of these metrics is distance to current climate 
(DCCik), which is the average gap between the expected climate 
niche of species trait strategies and the current conditions across 
a species’ range. The DCCik was calculated for species i and climate 
variable k , using all n localities l in which species i was predicted to 
occur. For the summer maximum climate niche metric (Nik)

where the predicted climate niche value ( E
[

Nik

]

) and associated stan-
dard error for the predicted value ( �Nik

) are based on each species’ trait 
strategy PCA scores. The climate value at each locality ( Ckl) is com-
pared to the positive 95% confidence interval (CI) of the predicted 
climate value ( E

[

Nik

]

+ 1.96 ∗ �Nik
), to account for the likely range of cli-

mates that species with similar trait strategies are observed to occupy. 
Species with positive values will on average occupy locations that are 
hotter than their upper 95% CI and are expected to have functional 
trait strategies that are not well matched to their current distribution.

To ensure a consistent meaning of positive DCC values indicating 
species occupying areas beyond their expected climate extreme, for 
winter minimum temperature and rainfall minimum the lower limit of 
the 95% CI was used and the values were negated

Then for average temperature and average rainfall, distance to 
current climate was calculated as

The absolute difference between local climate and the predicted 
average climate was compared to the CI and for difference (pDCCik) 
values less than 1.96 × �Nik

, differences were rounded to 0 before 

(1)DCCik =

∑n

l=1

�

Ckl −
�

E
�

Nik

�

+ 1.96 × �Nik

��

n

(2)DCCik =

∑n

l=1
−
�

Ckl −
�

E
�

Nik

�

+ 1.96 × �Nik

��

n

(3)pDCCik =
|

|

|

(

Ckl − E
[

Nik

])

|

|

|

− 1.96 × �Nik

(4)qDCCik =

⎧

⎪

⎨

⎪

⎩

0, for pDCCik<0

pDCCik, for pDCCik≥0

(5)DCCik =

∑n

l=1
qDCCik

n
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    |  1199ANDREW et al.

averaging because these values are within the confidence interval 
and therefore ‘within’ the climate niche average.

The same procedures were repeated for each climate variable 
using future climate projections, hence distance to future climate 
(DFC). For DFC the climate value at each locality ( Ckl) is replaced by 
the value from the future climate projection.

The difference between DFC and DCC was calculated for indi-
vidual species, with positive values indicating the species being ex-
posed to more extreme conditions across their range under climate 
change, based on their trait strategy, and negative change values 
indicating conditions becoming less severe

The above metrics were calculated for each species’ distribution 
by averaging across localities that species are expected to occupy. 
A second option for calculating DCC and DFC was also applied per 
location l, using lists of all j species expected at each location (based 
on SDM predictions), by taking the average of difference between 
local climate and the predicted climate CI of species, that is, the dif-
ference between the predicted climate CI of each species and the 
local climate was average across all local species. These species 
differences (summarized as: sDifflk) are calculated as above for each 
climate variable ( k), varying depending on the climate niche metric. 
These per location DCC and DFC calculations can be expressed as

A final metric that was only calculated for individual species was 
the climate change vulnerability (CCV) metric. For each species i, the 
species’ DFC scores were adjusted by using information on species 
climate niche breadth 

(

Bik

)

 and area of occurrence 
(

Ai

)

 to create a 
continuum of ‘potential vulnerability’, where species with large areas 

of occurrence and niche breadth are assumed to have higher adapt-
ability to varied climates. The potential vulnerability was adjusted 
in proportion to the variability in range of DFC 

(

�DFC

)

 scores from 
across all species

The use of percentiles (e.g. ‘ perc
(

Bik

)

’) in this approach is to rank 
species so a species in the top percentile for both niche breadth and 
range size would have 2.25 SD of the DFC variation subtracted from 
their DFC score and a species with the most restricted ranges for 
both niche breadth and range size would have only a small adjust-
ment of 0.25 SD subtracted. In this way species overall exposure to 
climate change based on functional traits (expressed as DFC) was 
adjusted by species rankings in terms of niche breadth and range 
size at a scale that is relevant to the range of all DFC values 

(

�DFC

)

. 
This vulnerability metric includes aspects of species adaptive capac-
ity based on functional traits and range size, as well as exposure to 
future climates. Because the calculation of DFC is adjusted between 
climate metrics so that positive DFC indicates exposure to condi-
tions beyond the species' expected climate niche based on its trait 
strategies, species with the highest CCV values will have the highest 
potential vulnerability.

Finally, expected climate limits were used to predict the least and 
most vulnerable trait strategies at each location. The method aims 
to identify the most vulnerable species and we would expect the 
phenotypes of the most and least vulnerable species to contrast. 
To do this the sDifflk differences for all species by location combina-
tions were normalized between the range of 0 and 1 for each climate 
variable. To identify the least vulnerable trait strategies, the nor-
malized differences were summed for all five climate variables, and 
the 10 species with the lowest summed normalized DCC were se-
lected in each location, and the mean height, seed mass and leaf area 
was taken for these least vulnerable species. To identify the most 

(6)Changeik = DFCik − DCCik

(7)DCClkorDFClk =

∑j

i=1
sDifflk

j

(8)CCVik = DFCik −
[(

perc
(

Bik

)

+ 0.5
)(

perc
(

Ai

)

+ 0.5
)]

�DFC

F I G U R E  2  The principal components 
analysis (PCA) trait space of Australian 
plants. The distribution of plant functional 
trait strategies is projected on a plane 
with PC1 and PC2. Arrows show the 
strength and direction of the vectors 
for the three traits. The colour gradient 
represents the probability of species 
occurrence in the trait space (red = high 
probability; white = low probability) while 
the contour lines show the .5, .95 and .99 
quantiles for proportion of species (as 
applied in Díaz et al., 2016). The first two 
principal components explain 86% of the 
variance in trait strategies (PC1 = 66% and 
PC2 = 20%)
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1200  |    ANDREW et al.

vulnerable trait strategies at each locality, the maximum normalized 
DCC score was taken for each species, meaning the most stressful 
climate variable was used to identify vulnerability at each location. 
The top 10 species with the highest maximum DCC score were used 
to get the mean trait values across these most vulnerable species.

3  |  RESULTS

The trait space for Australian plant species shows a central nucleus 
with a higher density of species (Figure 2). The relationships between 
our five current climate statistics and the trait space displayed in 
Figure 2 were moderate to strong (Figure 3 and Figure S1, Table S1). 
Of the environmental variables considered, functional trait combina-
tions were most strongly associated with average rainfall (R2 = .45) 
and then minimum rainfall (R2 = .36) with the three temperature var-
iables having slightly weaker relationships, with R2 ranging between 
.21 and .30 (Figure 3 and Figure S1). However, traits in combination 
did explain more variation in these climate metrics than individual 
traits. In a majority of cases trait combination models had R2 values 

that were more than double that of linear models for individual traits 
(Table S2). The global model fit across all families showed the spe-
cies with high PC1 values and low PC2 values (PC1 > 2 and PC2 < 0), 
generally occupy distributions with a wet tropical climate of high 
minimum rainfall, high winter minimum and moderate summer maxi-
mum temperatures (Figure 3b,d,f) and also having high average an-
nual temperatures and annual rainfall (Figure S1). Tall species with 
moderate sized leaves and small seeds (high PC1 and PC2 values) 
were associated with colder and drier climates compared to tall spe-
cies with larger seeds (i.e. lower PC2 scores). Shorter plants with 
small leaves (low PC1 values) were associated with both arid and 
colder climates but of this group those with larger seeds were gener-
ally found in hotter and drier climates (Figure 3 and Figure S1).

From these models, climate limits and climate averages were 
predicted for the trait combination of each species. The standard 
errors around these predictions for climate limits (Figure  S2a–c) 
are generally small and < 0.5 °C for summer maximum and winter 
minimum models and less than 0.1 for loge transformed minimum 
rainfall model (on the loge scale an increase of 0.1 is about a 10% 
increase). Positive DCC and DFC scores indicate that on average 

F I G U R E  3  Global generalized additive 
model (GAM) thin plate spline smoothers 
for current climate limits of Australian 
plant species. Shown in the left column 
are maps of the climate variables used 
to extract species climate values for 
each model. The right column plots 
contour maps of the global smoothers 
with shading to match relief [principal 
component 1 (PC1) on the x axis and PC2 
on the y axis]. These contour maps show 
how the climate niche metrics of species 
vary across trait space, highlighting 
possible signatures of adaptation. These 
global smoothers show variation in 
current climate limits across trait space for 
all species after random factor levels for 
families are accounted for. The R2 values 
for these highly significant relationships 
are included in panel headings and 
are for the full model including family 
level smoothers. The first row is for the 
summer maximum model (a, b, units °C), 
the second row is for the winter minimum 
model (c, d, units °C), and the third row is 
for the rainfall minimum model (e, f, units 
mm on loge scale)

(b)

(c) (d)

(e) (f)
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    |  1201ANDREW et al.

a species will experience conditions beyond its expected range of 
preferred climates, modelled on the climate ranges of species with 
similar functional trait strategies. The species range-wide distance 
to current climate (DCC) scores were mostly negative with a nor-
mal distribution for the three climate limits (Figure  S2d–f). The 
distance to future climate (DFC) species scores were still mostly 
negative for summer maximum (72% negative) and rainfall mini-
mum (82% negative), but with a moderate positive shift compared 
to DCC. These results indicate that species will experience more 
extreme conditions in the future that will still be within the ex-
pected suitable range for most species that have negative DFC 
values. The DFC scores for winter minimum showed the opposite 
trend with a clear negative shift (Figure S2e, 99.6% of species with 
negative DFC values). The change between DFC and DCC scores 
for species range averages (Figure S2g–i) are mostly positive for 
the summer maximum and rainfall minimum models and the winter 
minimum change values are all negative with a range between −2 
and −7 °C. For all climate variables positive change values indicate 
future climate conditions becoming more extreme within the spe-
cies’ current distribution and negative values indicate conditions 
becoming less extreme. Due to temperatures increasing, winter 
minimum temperatures are becoming less extreme. Similar histo-
grams for climate average models are shown in Figure S3. Because 
species distributions are likely to shift due to climate extremes, we 
focus on calculating our CCV index for only the three climate limit 
models. The CCV scores (Figure S2j–l) for all three climate limits 
have a normal distribution with nearly all species having negative 
values, with the small proportion of species with positive values 
(summer maximum = 4.3%, winter minimum = 0.05% and rainfall 
minimum  =  3.1%) expected to be the most vulnerable species 
based on trait combination, on average for the five future climate 
projections assessed.

To visualize vulnerable plant communities, the second option 
for calculating DCC and DFC was used. For this option differences 
between local climate and species expected climate niche were 
averaged across all species at each locality, predicted from dis-
tribution models. The DCC maps for climate limits (Figure 4a,d,g) 
show that the communities in more extreme climates have func-
tional trait strategies that are more likely to be exposed to con-
ditions beyond their expected climate limits (e.g. the central arid 
areas for summer maximum and rainfall minimum, and the alpine 
areas in south-east Australia and Tasmania for winter minimum). 
The DFC for winter minimum shows a clear negative shift and DFC 
for summer maximum and rainfall minimum show a less strong pos-
itive shift (Figure  4b,e,h). Worryingly, we show a shift to higher 
DFC values across most of Australia for summer maximum (95% 
increasing) and rainfall minimum (66% increasing). The climate 
change vulnerability (CCV) scores were averaged for plant com-
munities (Figure  4c,f,i) and show clear spatial variation with the 
highest values for summer maximum in north-western Australian, 
in southern Australia for winter minimum, and south-western and 
central Australia for rainfall minimum. Communities with high 
mean CCV are expected to be more strongly stressed under future 

climate conditions. For the average climate variables (Figure S4) we 
see DFC increasing the most in the monsoon tropics in northern 
Australia for average temperature and the arid centre and western 
Australia for average rainfall. To test the sensitivity of the above 
GAM method to the use of model-based predictions we include 
in the supplementary results file a second method based on sim-
ilar related species in trait space that found comparable results 
(Figures S5–S7).

Finally, we expect the phenotypes of the most vulnerable spe-
cies (i.e. the candidates for closer monitoring) to contrast with the 
least vulnerable species. These contrasts for localities are summa-
rized by the mean phenotype of the 10 most and least vulnerable 
species (Figure 5). These maps show patterns that are similar to what 
we might expect based on plant life history trade-offs, in that taller 
species and species with large leaves are more vulnerable across 
large areas including south-east and northern Australia with a major 
exception to this pattern being the wet tropics (see Discussion). 
Interestingly, the least vulnerable species had relatively small seeds 
across all of Australia.

4  |  DISCUSSION

We have shown that the current climate conditions that species oc-
cupy varies across the multivariate trait space of plant height, seed 
mass and leaf area, with a meaningful proportion of the variance in 
realized climate ranges being explained. This link between species 
functional trait strategies and climate could mean that the func-
tional diversity of plant communities will be reshaped if species shift 
their distributions to adapt to climate change. The trait strategies of 
Australian plants were significantly related to all five chosen climate 
response variables, selected for their relevance to plant growth and 
survival (adjusted-R2 range .21–.45, Table  S1). These relationships 
highlight how these three functional traits can reflect plant adap-
tation to varied climates (Figure 3 and Figure S1). In a local adap-
tation context the strength of these relationships could represent 
significant differences in fitness for trait strategies across climates, 
and although this is yet to be fully tested, these relationships could 
prove valuable for informing conservation. Climate provides multi-
ple challenges for plants and functional traits are not only important 
to species thermal tolerance (Dwyer & Laughlin,  2017) but also a 
species’ capacity to compete for resources and to reproduce (Díaz 
et al., 2016). Therefore, the strength of the relationships we observe 
from this exploratory analysis with just three traits indicates that 
trait strategies contain potentially meaningful information for as-
sessing species climate preferences. Similar relationships between 
climate and functional traits have been noted previously, especially 
for individual traits (e.g. Lamont et al., 2005; Westoby et al., 2002; 
Wright et al., 2017). However, our method highlights that, for exam-
ple, tall species with large leaves and seeds will likely occupy very 
different climate niches to tall species with small leaves and seeds, 
demonstrating that considering traits in combination can be more 
informative.
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1202  |    ANDREW et al.

Based on relationships between climate and functional traits we 
find that under climate projections for the next 50–60 years, the ma-
jority of species will continue to inhabit the range of climates com-
monly occupied by related plant species with similar trait strategies. 
Species living in more extreme climates are more likely to be exposed 
to conditions beyond their predicted climate limits (Figure 4), partly 
because the most extreme locations act as an upper bound to cur-
rent climate limits of species trait strategies. However, the purpose 
of the DCC, DFC and CCV metrics is that they can use data from a 
large proportion of species and rank species to identify those that 
are potentially vulnerable to climate change and could have been 
overlooked previously in other assessments of vulnerability (see 
Table S3 for candidate species). Of the 6,747 species analysed here, 
400 (5.9%) were already included in the current 1,383 species listed 
as threatened under the Environment Protection and Biodiversity 

Conservation Act 1999 (EPBC Act); the remaining listed species 
were not included in the analysis. Of our 150 top candidate vulner-
able species, 15 (10%) are listed as threatened under the EPBC Act. 
The mean CCV scores for EPBC listed species were higher than non-
listed species (summer maximum = 17.2%, winter minimum = 31.5% 
higher and rainfall minimum = 27.6% higher); differences between 
the two groups were significant for all three metrics when tested. 
We would not expect a strong overlap a priori due to the substan-
tial differences between our method and the methods used for 
assessing species under the EPBC Act [e.g. International Union for 
Conservation of Nature (IUCN) analogous criteria]. Our method aims 
to identify new candidate species based on functional traits, when 
there is an absence of data on species adaptive capacity and funda-
mental climate limits. Further investigations of candidate species will 
hopefully provide better estimates of vulnerability after accounting 

F I G U R E  4  Local species mean vulnerability for predicted limits models. These location means for distance to current climate (DCC) and 
distance to future climate (DFC) are calculated per location using the local climate values and the expected climate limits of each local species. 
The maps for mean location DCC are in the first column and the maps for mean location DFC are in the second column. The third column has 
the mean climate change vulnerability (CCV) for the list of species predicted to be present at each locality; these mean CCV values average 
the CCV values calculated for species distributions. The first row is for the summer maximum model (a, b, c, units °C), the second row is for the 
winter minimum model (d, e, f, units °C), and the third row is for the rainfall minimum model (g, h, i, units mm on loge scale)
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    |  1203ANDREW et al.

for other traits or the existence of microclimates that species are oc-
cupying. The mismatches between trait strategies and climate limits 
could also be a legacy of past conditions and dispersal limitations 
in combination with a limited capacity to adapt functional traits. 
However, if links between trait strategies and fitness are strong then 
these mismatches can still have a cost that influences vulnerability.

Anticipated shifts toward hotter and drier conditions under fu-
ture climate projections for Australia were reflected in mean DCC 
and DFC scores across the continent (Figure 4 and Figure S4). The 
exception to this pattern was for winter minimum temperature, 
which sees a negative shift to warmer and therefore, less extreme 
winter temperatures. These large shifts between winter DCC and 
DFC may not be trivial and could mean species turnover across the 
landscape as winter conditions become less extreme (Alexander 
et al., 2018). Average CCV scores were also high in many locations 
characterized by extreme climate conditions (i.e. arid regions) and in 
areas of high plant endemism, such as the south-west of Western 
Australia (Figure  4c,f,i). On a more positive note, mapping for av-
erage climate conditions (Figure S4) exhibit many areas of low DFC 

(e.g. southern Australia for average temperature, northern and east-
ern Australia for average rainfall). These regions with both low DCC 
and DFC indicate species assemblages that are expected to remain 
within their preferred climate niche for their trait strategies.

4.1  |  Which trait combinations are the most 
(and the least) vulnerable to climate change?

The phenotypes of the least vulnerable species with the lowest nor-
malized DCC scores largely follow previously identified trait com-
binations from global studies into trait–environment relationships 
(e.g. Laughlin et al., 2010; Liu et al., 2010; de la Riva et al., 2016). 
For instance, taller plants with larger leaves were characteristic 
of areas with higher water availability, whereas shorter-statured 
plants with small leaves were typically found to be less vulnerable 
in arid and alpine environments (Figure 5, climate variation Figure 3). 
Interestingly, in the arid central parts of Australia, the least vulnera-
ble species had clearly larger seeds, perhaps reflecting the previously 

F I G U R E  5  Phenotypes of least and most vulnerable trait strategies by locality. Normalized distance to current climate (DCC) scores for 
all five climate variables were summed for each species to find the 10 species with the lowest total DCC at each location. These 10 species 
with the lowest combined DCC were used to calculate an average height, seed mass and leaf area for the least vulnerable trait strategies at 
each locality. The maximum normalized DCC for each species was used to rank species to find the top 10 species with the most vulnerable 
phenotypes at each location. (a) Least vulnerable height, (b) most vulnerable height, (c) least vulnerable seed mass, (d) most vulnerable seed 
mass, (e) least vulnerable leaf area, (f) most vulnerable leaf area. All traits are on the natural loge scale with legends back transformed to be 
on the original scale

(a) (b)

(c) (d)

(e) (f)
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1204  |    ANDREW et al.

observed pattern that species with larger seeds have higher sur-
vival in environments with lower water availability (Leishman & 
Westoby, 1994; Metz et al., 2010). In general, the most vulnerable 
phenotypes under future climates in most areas are species that are 
relatively tall (> 15 m) with large leaves (> 1,500 mm2) and also with 
relatively large seeds in the south-east (Figure 5). These phenotypes 
occur along the southern and eastern coastline where climates are 
currently temperate due in part to the influence of maritime condi-
tions, but the incidence of extreme events – in particular sustained 
heatwaves – is increasing (Trancosoa et al., 2020). Tall species with 
large leaves are common in the rain forests and tall closed eucalypt 
forests of this region. One possible result of reduced water avail-
ability and increased heatwaves might be the loss of these tall, large-
leaved species from the landscape if their range changes in order to 
persist within their current climate niche. The removal of these can-
opy species would likely change both the composition and function 
of vegetation in affected areas. Rain forests are also at risk from the 
combined effects of land clearing and fragmentation, weed invasion 
and post-logging incursions of flammable species such as eucalypts, 
which increase the risk of fire intruding into these sensitive commu-
nities (Fox et al., 1997; Lindenmayer et al., 2009).

4.2  |  Caveats for the application of trait-modelling 
to climate change predictions

Our ability to predict aspects of the climate niche of plant trait 
strategies is dependent on the performance of the GAMs that we 
used. The standard errors around the predicted climate values for 
our GAMs were generally relatively small (Figure S2a–c), indicating 
broad convergence in the alignment of trait strategies with climate 
conditions. The standard errors for temperature models were around 
0.5  °C indicating that the CI around the trends is relevant to the 
range of expected climate change (average temperature increases of 
1.5–2 °C) and should be sensitive enough to assess expected changes 
in temperature. Models that used combinations of functional traits 
also explained a much larger proportion of the variance in species 
climate niche metrics than individual traits (Table  S2). However, 
the current climate niche of some species showed large divergence 
from predicted values indicating these species are potentially at a 
disadvantage in terms of their trait combination (see DCC range in 
Figure S2d–f). These outlier species likely possess other adaptations 
not considered here that increase their capacity to survive in cur-
rent climate conditions. For example, density of woody tissues may 
more closely approximate hydraulic strategies revealing information 
about whole-plant water use efficiency (Anderegg et al., 2020), or 
root traits likely vary depending on prevailing environmental condi-
tions (Laughlin et al., 2021). Traits like these and many others could 
be easily added to our method, given data availability. Our approach 
can also be easily adapted to any group of species or set of func-
tional traits, with the selection of the best available data influenced 
by knowledge of species biology. The use of ordination to reduce 
the dimensionality of any set of traits to two dimensions allows the 

method to be consistent for any number of multiple traits, but the 
interpretation of the trait space will likely become more difficult with 
higher numbers of traits. Our technique allows outlier species to be 
easily identified for closer evaluation of their vulnerability to climate 
change with either experimental manipulations or through genomic 
approaches (Razgour et al., 2018). Future studies of the functional 
traits of species in decline due to climate change could also help con-
firm the usefulness of the results presented here.

The methods presented here for identifying vulnerable plant spe-
cies focus on functional trait strategies and distribution data that are 
available for many species, but these data are not able to fully replace 
other measures of thermal tolerance and drought tolerance that are 
not commonly available but, in principle, are more directly relevant 
to understanding the climatic limits of species distributions. However, 
functional traits and life history will affect species competitiveness 
and survival in different environments and because it is logistically via-
ble to gather these data for a large portion of plant species these traits 
provide an opportunity to develop a data driven process for identifying 
potentially vulnerable species that can be the focus of more detailed 
assessments of vulnerability. Experimentally testing adaptive capacity 
is not viable for all species but stress tolerance data for a representa-
tive sample of trait strategies could help validate the patterns between 
trait strategies and realized climate limits we have presented.

Our methods also focus on species’ capacity to track climate 
change within their home range rather than the alternative of species’ 
capacity to shift their distribution with climate change. If a plant spe-
cies shifts its distribution it may be exposed to more familiar climates 
but will likely face other challenges such as different soils, symbionts, 
competitors, pathogens, and human land use. Range shifts represent a 
different set of scenarios to be assessed (Trisos et al., 2020) and it may 
not be necessary to look at these for species that are not likely to be 
pushed beyond their fundamental climate limits.

4.3  |  Conclusions

Climate change is already having appreciable impacts on species 
(Coleman & Bragg, 2021). Efforts to understand these impacts require 
techniques that identify species and regions most at risk. Here we 
present results using trait data for 6,747 species from the c. 25,000 
native Australian plant species, suggesting that trait coverage needs 
to expand to pro a comprehensive overview across the flora. Gaps 
in the availability of trait data are not unique to Australia (Cornwell 
et al., 2019), and efforts to complete a global inventory of plant traits 
must continue to expand through both regional campaigns and global 
synthesis of data. Not only are the traits we focused on in this study 
in need of better coverage, but several other physiological traits that 
relate to how plants respond to extreme climatic events or drought 
would further improve our trait-based platform for identifying species 
vulnerable to climate change. Combining information on species traits, 
distributions and environment offers a powerful approach for under-
standing climate change vulnerability in global vegetation and assess-
ing the consequences for species in coming decades.
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