2,005 research outputs found
The Caribbean needs big marine protected areas
The attached document is the author(’s’) final accepted/submitted version of the journal article. You are advised to consult the publisher’s version if you wish to cite from it
Concentric lamellae - novel microanatomical structures in the articular calcified cartilage of mice.
The structure, ultrastructure and function of hyaline articular cartilage (HAC) and subchondral bone (SCB), and their involvement in the pathogenesis of osteoarthritis (OA) have been extensively researched. However, much less attention has been focused on the intervening tissue, articular calcified cartilage (ACC) and its role in the initiation and progression of OA. Using both light microscopy (LM) and transmission electron microscopy (TEM), a study of ACC in wild type (WT) mice, and mice with genetic osteoarthropathies (AKU) was undertaken to further understand the role played by ACC in the early stages of OA.Tibio-femoral joints were obtained from BALB/c WT and BALB/c AKU mice aged between 7 and 69 weeks. One joint was processed for routine histological analysis. The tip of the medial femoral condyle (MFC), which contained HAC, ACC, and SCB, was dissected from the contra-lateral joint and processed for TEM.In WT and AKU mice novel microanatomical structures, designated concentric lamellae, were identified surrounding chondrocytes in the ACC. The lamellae appeared to be laid down in association with advancement of the tidemark indicating they may be formed during calcification of cartilage matrix. The lamellae were associated with hypertrophic chondrocytes throughout the ACC.Novel microanatomical structures, termed concentric lamellae, which were present around hypertrophic chondrocytes in the ACC are described for the first time. Their apparent association with mineralisation, advancement of the tidemark, and greater abundance in a model of osteoarthropathy indicate their formation could be important in the pathogenesis of OA and AKU
Complementary spin-Hall and inverse spin-galvanic effect torques in a ferromagnet/semiconductor bilayer.
This is the author accepted manuscript. The final version is available from NPG at http://www.nature.com/ncomms/2015/150331/ncomms7730/abs/ncomms7730.html.Recently discovered relativistic spin torques induced by a lateral current at a ferromagnet/paramagnet interface are a candidate spintronic technology for a new generation of electrically controlled magnetic memory devices. The focus of our work is to experimentally disentangle the perceived two model physical mechanisms of the relativistic spin torques, one driven by the spin-Hall effect and the other one by the inverse spin-galvanic effect. Here, we show a vector analysis of the torques in a prepared epitaxial transition-metal ferromagnet/semiconductor-paramagnet single-crystal structure by means of the all-electrical ferromagnetic resonance technique. By choice of our structure in which the semiconductor paramagnet has a Dresselhaus crystal inversion asymmetry, the system is favourable for separating the torques due to the inverse spin-galvanic effect and spin-Hall effect mechanisms into the field-like and antidamping-like components, respectively. Since they contribute to distinct symmetry torque components, the two microscopic mechanisms do not compete but complement each other in our system.The authors acknowledge support from EU European Research Council (ERC) advanced
grant no. 268066, from the Ministry of Education of the Czech Republic grant no.
LM2011026, from the Grant Agency of the Czech Republic grant no. 14-37427G and
the Academy of Sciences of the Czech Republic Praemium Academiae. A.J.F. acknowledges
support from a Hitachi research fellowship. H.K. acknowledges financial support from the
Japan Science and Technology Agency (JST)
Correction: How Long Is Too Long in Contemporary Peer Review? Perspectives from Authors Publishing in Conservation Biology Journals.
<p>Correction: How Long Is Too Long in Contemporary Peer Review? Perspectives from Authors Publishing in Conservation Biology Journals</p
Biodiversity assessment of tropical shelf eukaryotic communities via pelagic eDNA metabarcoding
Our understanding of marine communities and their functions in an ecosystem relies on the ability to detect and monitor species distributions and abundances. Currently, the use of environmental DNA (eDNA) metabarcoding is increasingly being applied for the rapid assessment and monitoring of aquatic species. Most eDNA metabarcoding studies have either focussed on the simultaneous identification of a few specific taxa/groups or have been limited in geographical scope. Here, we employed eDNA metabarcoding to compare beta diversity patterns of complex pelagic marine communities in tropical coastal shelf habitats spanning the whole Caribbean Sea. We screened 68 water samples using a universal eukaryotic COI barcode region and detected highly diverse communities, which varied significantly among locations, and proved good descriptors of habitat type and environmental conditions. Less than 15% of eukaryotic taxa were assigned to metazoans, most DNA sequences belonged to a variety of planktonic “protists,” with over 50% of taxa unassigned at the phylum level, suggesting that the sampled communities host an astonishing amount of micro‐eukaryotic diversity yet undescribed or absent from COI reference databases. Although such a predominance of micro‐eukaryotes severely reduces the efficiency of universal COI markers to investigate vertebrate and other metazoans from aqueous eDNA, the study contributes to the advancement of rapid biomonitoring methods and brings us closer to a full inventory of extant marine biodiversity
Living with severe allergy: an Anaphylaxis Campaign national survey of young people
<p>Abstract</p> <p>Background</p> <p>The transition to adulthood can be particularly challenging for young people with severe allergies, who must learn to balance personal safety with independent living. Information and support for young people and their families are crucial to successfully managing this transition. We sought to: gather insights into the impact of severe allergies on the lives of young people; explore where young people go for information about anaphylaxis and what information they want and need; identify areas where further support is needed.</p> <p>Methods</p> <p>An online questionnaire survey of young people aged 15–25 years with severe allergies in the United Kingdom (UK) was conducted on behalf of the Anaphylaxis Campaign, the main patient support organisation. Participants were recruited mainly from the Anaphylaxis Campaign membership database and also via allergy clinics and social media. The study was funded by the Anaphylaxis Campaign’s In Memoriam Fund.</p> <p>Results</p> <p>A total of 520 young people responded to the survey. The majority had lived with severe allergies since they were young children; 59% reported having attended Accident and Emergency units as a consequence of their allergies. Only 66% of respondents reported always carrying their epinephrine auto-injectors; only 23% had ever used these. Few were currently receiving specialist allergy care; younger respondents were more likely to be under specialist care (34%) than those 18 years and above (23%). Respondents wanted more information about eating out (56%), travelling (54%) and food labelling (43%). Almost a quarter of respondents (23%) reported needing more information on managing their allergies independently without parental help. Managing allergies in the context of social relationships was a concern for 22% of respondents.</p> <p>Conclusions</p> <p>This survey has identified the information and support needs and gaps in service provision for young people with severe allergies. Healthcare professionals and patient support organisations, with the support of the food industry, can help to meet these needs.</p
Development and inter-rater reliability of the Liverpool adverse drug reaction causality assessment tool.
To develop and test a new adverse drug reaction (ADR) causality assessment tool (CAT)
Sustained attention in mild cognitive impairment with Lewy bodies and Alzheimer\u27s disease
\ua9 The Author(s), 2023. Published by Cambridge University Press on behalf of International Neuropsychological Society. Objective: Attentional impairments are common in dementia with Lewy bodies and its prodromal stage of mild cognitive impairment (MCI) with Lewy bodies (MCI-LB). People with MCI may be capable of compensating for subtle attentional deficits in most circumstances, and so these may present as occasional lapses of attention. We aimed to assess the utility of a continuous performance task (CPT), which requires sustained attention for several minutes, for measuring attentional performance in MCI-LB in comparison to Alzheimer\u27s disease (MCI-AD), and any performance deficits which emerged with sustained effort. Method: We included longitudinal data on a CPT sustained attention task for 89 participants with MCI-LB or MCI-AD and 31 healthy controls, estimating ex-Gaussian response time parameters, omission and commission errors. Performance trajectories were estimated both cross-sectionally (intra-task progress from start to end) and longitudinally (change in performance over years). Results: While response times in successful trials were broadly similar, with slight slowing associated with clinical parkinsonism, those with MCI-LB made considerably more errors. Omission errors were more common throughout the task in MCI-LB than MCI-AD (OR 2.3, 95% CI: 1.1-4.7), while commission errors became more common after several minutes of sustained attention. Within MCI-LB, omission errors were more common in those with clinical parkinsonism (OR 1.9, 95% CI: 1.3-2.9) or cognitive fluctuations (OR 4.3, 95% CI: 2.2-8.8). Conclusions: Sustained attention deficits in MCI-LB may emerge in the form of attentional lapses leading to omissions, and a breakdown in inhibitory control leading to commission errors
Developing and assessing a new web-based tapping test for measuring distal movement in Parkinson's disease: a Distal Finger Tapping test
Disability in Parkinson's disease (PD) is measured by standardised scales including the MDS-UPDRS, which are subject to high inter and intra-rater variability and fail to capture subtle motor impairment. The BRadykinesia Akinesia INcoordination (BRAIN) test is a validated keyboard tapping test, evaluating proximal upper-limb motor impairment. Here, a new Distal Finger Tapping (DFT) test was developed to assess distal upper-limb function. Kinetic parameters of the test include kinesia score (KS20, key taps over 20 s), akinesia time (AT20, mean dwell-time on each key) and incoordination score (IS20, variance of travelling time between key taps). To develop and evaluate a new keyboard-tapping test for objective and remote distal motor function in PD patients. The DFT and BRAIN tests were assessed in 55 PD patients and 65 controls. Test scores were compared between groups and correlated with the MDS-UPDRS-III finger tapping sub-scores. Nine additional PD patients were recruited for monitoring motor fluctuations. All three parameters discriminated effectively between PD patients and controls, with KS20 performing best, yielding 79% sensitivity for 85% specificity; area under the receiver operating characteristic curve (AUC) = 0.90. A combination of DFT and BRAIN tests improved discrimination (AUC = 0.95). Among three parameters, KS20 showed a moderate correlation with the MDS-UPDRS finger-tapping sub-score (Pearson's r = - 0.40, p = 0.002). Further, the DFT test detected subtle changes in motor fluctuation states which were not reflected clearly by the MDS-UPDRS-III finger tapping sub-scores. The DFT test is an online tool for assessing distal movements in PD, with future scope for longitudinal monitoring of motor complications
- …