430 research outputs found

    Deep Neural Networks for Inverse Problems with Pseudodifferential Operators: An Application to Limited-Angle Tomography

    Get PDF
    We propose a novel convolutional neural network (CNN), called \Psi DONet, designed for learning pseudodifferential operators (\Psi DOs) in the context of linear inverse problems. Our starting point is the iterative soft thresholding algorithm (ISTA), a well-known algorithm to solve sparsity-promoting minimization problems. We show that, under rather general assumptions on the forward operator, the unfolded iterations of ISTA can be interpreted as the successive layers of a CNN, which in turn provides fairly general network architectures that, for a specific choice of the parameters involved, allow us to reproduce ISTA, or a perturbation of ISTA for which we can bound the coefficients of the filters. Our case study is the limited-angle X-ray transform and its application to limited-angle computed tomography (LA-CT). In particular, we prove that, in the case of LA-CT, the operations of upscaling, downscaling, and convolution, which characterize our \Psi DONet and most deep learning schemes, can be exactly determined by combining the convolutional nature of the limited-angle Xray transform and basic properties defining an orthogonal wavelet system. We test two different implementations of \Psi DONet on simulated data from limited-angle geometry, generated from the ellipse data set. Both implementations provide equally good and noteworthy preliminary results, showing the potential of the approach we propose and paving the way to applying the same idea to other convolutional operators which are \Psi DOs or Fourier integral operators

    A Hybrid Artificial Bee Colony Algorithm for Graph 3-Coloring

    Full text link
    The Artificial Bee Colony (ABC) is the name of an optimization algorithm that was inspired by the intelligent behavior of a honey bee swarm. It is widely recognized as a quick, reliable, and efficient methods for solving optimization problems. This paper proposes a hybrid ABC (HABC) algorithm for graph 3-coloring, which is a well-known discrete optimization problem. The results of HABC are compared with results of the well-known graph coloring algorithms of today, i.e. the Tabucol and Hybrid Evolutionary algorithm (HEA) and results of the traditional evolutionary algorithm with SAW method (EA-SAW). Extensive experimentations has shown that the HABC matched the competitive results of the best graph coloring algorithms, and did better than the traditional heuristics EA-SAW when solving equi-partite, flat, and random generated medium-sized graphs

    Biological validation of coenzyme Q redox state by HPLC-EC measurement: relationship between coenzyme Q redox state and coenzyme Q content in rat tissues

    Get PDF
    AbstractThe properties of coenzymes Q (CoQ9 and CoQ10) are closely linked to their redox state (CoQox/total CoQ)×100. In this work, CoQ redox state was biologically validated by high performance liquid chromatography-electrochemical measurement after modulation of mitochondrial electron flow of cultured cells by molecules increasing (rotenone, carbonyl cyanide chlorophenylhydrazone) or decreasing (antimycin) CoQ oxidation. The tissue specificity of CoQ redox state and content were investigated in control and hypoxic rats. In control rats, there was a strong negative linear regression between tissular CoQ redox state and CoQ content. Hypoxia increased CoQ9 redox state and decreased CoQ9 content in a negative linear relationship in the different tissues, except the heart and lung. This result demonstrates that, under conditions of mitochondrial impairment, CoQ redox control is tissue-specific

    Apolipoprotein O is mitochondrial and promotes lipotoxicity in heart

    Get PDF
    Diabetic cardiomyopathy is a secondary complication of diabetes with an unclear etiology. Based on a functional genomic evaluation of obesity-associated cardiac gene expression, we previously identified and cloned the gene encoding apolipoprotein O (APOO), which is overexpressed in hearts from diabetic patients. Here, we generated APOO-Tg mice, transgenic mouse lines that expresses physiological levels of human APOO in heart tissue. APOO-Tg mice fed a high-fat diet exhibited depressed ventricular function with reduced fractional shortening and ejection fraction, and myocardial sections from APOO-Tg mice revealed mitochondrial degenerative changes. In vivo fluorescent labeling and subcellular fractionation revealed that APOO localizes with mitochondria. Furthermore, APOO enhanced mitochondrial uncoupling and respiration, both of which were reduced by deletion of the N-terminus and by targeted knockdown of APOO. Consequently, fatty acid metabolism and ROS production were enhanced, leading to increased AMPK phosphorylation and Ppara and Pgc1a expression. Finally, we demonstrated that the APOO-induced cascade of events generates a mitochondrial metabolic sink whereby accumulation of lipotoxic byproducts leads to lipoapoptosis, loss of cardiac cells, and cardiomyopathy, mimicking the diabetic heart-associated metabolic phenotypes. Our data suggest that APOO represents a link between impaired mitochondrial function and cardiomyopathy onset, and targeting APOO-dependent metabolic remodeling has potential as a strategy to adjust heart metabolism and protect the myocardium from impaired contractility

    Hypothalamic Reactive Oxygen Species Are Required for Insulin-Induced Food Intake Inhibition: An NADPH Oxidase–Dependent Mechanism

    Get PDF
    1939-327X (Electronic) Journal Article Research Support, Non-U.S. Gov'tOBJECTIVE: Insulin plays an important role in the hypothalamic control of energy balance, especially by reducing food intake. Emerging data point to a pivotal role of reactive oxygen species (ROS) in energy homeostasis regulation, but their involvement in the anorexigenic effect of insulin is unknown. Furthermore, ROS signal derived from NADPH oxidase activation is required for physiological insulin effects in peripheral cells. In this study, we investigated the involvement of hypothalamic ROS and NADPH oxidase in the feeding behavior regulation by insulin. RESEARCH DESIGN AND METHODS: We first measured hypothalamic ROS levels and food intake after acute intracerebroventricular injection of insulin. Second, effect of pretreatment with a ROS scavenger or an NADPH oxidase inhibitor was evaluated. Third, we examined the consequences of two nutritional conditions of central insulin unresponsiveness (fasting or short-term high-fat diet) on the ability of insulin to modify ROS level and food intake. RESULTS: In normal chow-fed mice, insulin inhibited food intake. At the same dose, insulin rapidly and transiently increased hypothalamic ROS levels by 36%. The pharmacological suppression of this insulin-stimulated ROS elevation, either by antioxidant or by an NADPH oxidase inhibitor, abolished the anorexigenic effect of insulin. Finally, in fasted and short-term high-fat diet-fed mice, insulin did not promote elevation of ROS level and food intake inhibition, likely because of an increase in hypothalamic diet-induced antioxidant defense systems. CONCLUSIONS: A hypothalamic ROS increase through NADPH oxidase is required for the anorexigenic effect of insulin

    Iron deficiency: an emerging therapeutic target in heart failure

    Get PDF
    In patients with heart failure, iron deficiency is frequent but overlooked, with a prevalence of 30%-50%. Since it contributes to cardiac and peripheral muscle dysfunction, iron deficiency is associated with poorer clinical outcomes and a greater risk of death, independent of haemoglobin level. Therefore, iron deficiency emerges as a new comorbidity and a therapeutic target of chronic heart failure in addition to chronic renal insufficiency, anaemia and diabetes. In a series of placebo-controlled, randomised studies in patients with heart failure and iron deficiency, intravenous iron had a favourable effect on exercise capacity, functional class, LVEF, renal function and quality of life. These clinical studies were performed in the context of a renewed interest in iron metabolism. During the past 10 years, knowledge about the transport, storage and homeostasis of iron has improved dramatically, and new molecules involved in iron metabolism have been described (eg, hepcidin, ferroportin, divalent metal transporter 1). Recent European guidelines recommend the monitoring of iron parameters (ie, serum ferritin, transferrin saturation) for all patients with heart failure. Ongoing clinical trials will explore the benefits of iron deficiency correction on various heart failure parameters

    An Analysis of Solution Properties of the Graph Coloring Problem

    Get PDF
    This paper concerns the analysis of solution properties of the Graph Coloring Problem. For this purpose, we introduce a property based on the notion of representative sets which are sets of vertices that are always colored the same in a set of solutions. Experimental results on well-studied DIMACS graphs show that many of them contain such sets and give interesting information about the diversity of the solutions. We also show how such an analysis may be used to improve a tabu search algorithm
    corecore