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Abstract The properties of coenzymes Q (CoQ9 and CoQ10)
are closely linked to their redox state (CoQox/total CoQ) · 100.
In this work, CoQ redox state was biologically validated by high
performance liquid chromatography-electrochemical measure-
ment after modulation of mitochondrial electron flow of cultured
cells by molecules increasing (rotenone, carbonyl cyanide chlo-
rophenylhydrazone) or decreasing (antimycin) CoQ oxidation.
The tissue specificity of CoQ redox state and content were
investigated in control and hypoxic rats. In control rats, there
was a strong negative linear regression between tissular CoQ
redox state and CoQ content. Hypoxia increased CoQ9 redox
state and decreased CoQ9 content in a negative linear relation-
ship in the different tissues, except the heart and lung. This result
demonstrates that, under conditions of mitochondrial impair-
ment, CoQ redox control is tissue-specific.
� 2004 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Coenzyme Qs (CoQs) are strongly implicated in the oxido-

reduction cellular metabolism. The length of the constitutive

isoprenoid side chain determines the homologous forms of

CoQs. CoQ10 is the major form in human cells and plants,

whereas CoQ9 predominates in rodents [1].

First, CoQs are the only non-protein components of the

respiratory chain. They are bound to mitochondrial mem-

brane proteins [2] and function as an obligatory electron

carrier between complexes I or II and complex III of the
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mitochondrial respiratory chain. At this site, partial oxida-

tion of CoQred produces a semi-reduced form, which inter-

acts with oxygen to generate superoxide anion. This accounts

for the major part of superoxide anion physiologically gen-

erated by the mitochondria. Second, in their CoQox, CoQs

behave as an obligatory cofactor of uncoupling protein ac-

tivity [3]. Last, CoQs are the only lipophilic antioxidants

which are biosynthesized in humans. In their reduced form

they have an antioxidant activity, as scavengers of reactive

oxygen species or lipid radicals and regenerators of a-to-
copherol from the a-tocopheroxyl radical [4]. Moreover,

CoQ redox state may be an useful marker of oxidative stress

[5,6].

Various studies have reported beneficial effects of CoQ10

supplementation in different disease conditions during animal

experimentation [7,8] or human therapy [9,10]. As described

above, these lipophilic and ubiquitous molecules have func-

tions related to their redox state. To investigate CoQ content

and redox state, a sensitive and reliable method of quantifying

oxidized and reduced forms is required.

Several high performance liquid chromatography (HPLC)

methods have been described for the determination of total

CoQ10 [11–16]. CoQ10ox and CoQ10red have also been

measured using complex analytical procedures [12,16,17]. At

the present time, EC detection is the most sensitive of the

different modes of detection coupled with HPLC. Recently,

Tang et al. [6,18] developed a simple and rapid HPLC-elec-

trochemical (EC) method for the determination of CoQsox

and CoQsred.

The aim of this work was to (i) biologically validate HPLC-

EC measurement of CoQ redox state by using molecules which

can modify mitochondrial CoQ oxidation and (ii) investigate

the tissular specificity of CoQ redox state and content in

control and hypoxic rats. Hypoxia is in fact well known to be

responsible for mitochondrial oxidative stress [19], which

could modify CoQ redox state.
2. Materials and methods

2.1. Materials
CoQ9ox, CoQ10ox and other chemicals were obtained from Sigma

(L’Isle d’Abeau Chesnes, France). All chemicals were of HPLC grade.
ation of European Biochemical Societies.
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2.2. Cell culture conditions for biological validation of CoQ redox state
Murine 3T3-F442A preadipocytes were routinely cultured as previ-

ously described [20]. Cells were seeded at a density of 4500 cells/cm2 in
Dulbecco’s modified Eagle’s medium supplemented with 10% fetal calf
serum. Measurements were performed at a pre-confluent state. Mole-
cules acting at different levels of the mitochondrial respiratory chain
were chosen to increase or decrease CoQ oxidation. Rotenone, an
inhibitor of complex I, and carbonyl cyanide chlorophenylhydrazone
(CCCP), an uncoupler, increase CoQ oxidation. On the contrary, an-
timycin, an inhibitor of complex III, decreases CoQ oxidation. Mole-
cules were dissolved in ethanol to a final concentration of 0.4% in the
medium. Controls were performed with 0.4% ethanol. These molecules
were used at concentrations which only moderately affect cell respi-
ration: rotenone (10�9 M) and antimycin (2 · 10�8 M) which inhibit
cell respiration by 15%, and CCCP (10�6 M) which increases it by 15%
were added to the medium. At different times, cells were washed twice
with phosphate buffer saline (PBS), trypsinized and collected in PBS.
After centrifugation (400� g,10 min), the pellet was homogenized in
100 ll of PBS and stored at )80 �C. This freezing procedure was
validated by comparison with measurement of freshly prepared
homogenates.
Fig. 1. Typical HPLC-EC chromatogram of CoQ9 and CoQ10. (A)
Calibrators at the following concentrations: 1545 nM for CoQ9red (1),
1576 nM for CoQ10red (2), 1180 nM for CoQ9ox (3) and 1113 nM for
CoQ10ox (4). (B) Cell homogenate after 2-propanol extraction.
2.3. Animals and treatments
Male Wistar rats (220–260 g) were fed ad libitum. In a first experi-

ment, 6 rats were killed by exsanguination. The dissected organs were
immediately frozen in liquid nitrogen and stored at )80 �C until
analysis. In a second experiment, three rats were exposed to hypoxia in
a hypobaric chamber simulating 8000 m above sea level (270 mmHg,
21% O2) for 4 h (acute hypoxia) and three control rats breathed am-
bient air. After exsanguination, dissected organs were treated as de-
scribed above.

2.4. Quantification of CoQs (reduced and oxidized forms)
Extraction of biological samples. In order to define the best extrac-

tion conditions for preventing CoQ oxidation, two comparative assays
were performed with 3T3-F442A cells (minimum 250 000 cells). In the
first assay, 100 ll of cell homogenate was mixed with 500 ll of ethanol
and centrifuged (4000� g, 3 min). The supernatant was extracted with
2 ml of hexane. After evaporation of the hexane phase, the pellet was
dissolved in 500 ll of the chromatographic mobile phase (see HPLC-
EC apparatus below). In the second assay, 100 ll of cell homogenate
was mixed with 500 ll of 2-propanol, centrifuged (4000� g, 3 min) and
the supernatant was recovered. 50 ll of mobile phase (first assay) or of
the 2-propanol extract (second assay) was injected into the HPLC
system.
In addition, to evaluate CoQ content recovery and CoQred con-

servation during 2-propanol extraction, measurements were done with
cellular homogenates with or without a known quantity of CoQred
standard (107 nmol).
For the subsequent experiments, 2-propanol extraction was used.

Cell homogenates were extracted as described above. Frozen tissues
(100 mg) were added to 0.9 ml of 2-propanol and homogenized with an
Ultraturax blender. 100 ll of this homogenate was mixed with 500 ll
of 2-propanol and treated as described above.
HPLC-EC apparatus. This consisted of a Gilson 307 pump, a

Rheodine injector, an analytical column and an ESA Coulochem 2
Electrochemical Detector (Model 5200 A) with a Pentium II computer/
controller with EuroChrom 2000 Integration Package for Windows.
Briefly, a guard cell (ESA Model 5020) (E1) was placed between the
pump and the injector to oxidize electroactive materials in the mobile
phase. The analytical cell (ESAModel 5010-porous graphite) consisted
of a series of two coulometric electrodes and was connected in series to
the analytical column: the first electrode (E2) was for CoQ reduction
and the second electrode (E3) was for CoQred detection. The different
homologs, CoQ9 and CoQ10, were identified by chromatographic
separation. In-prefilters were placed between the pump and the guard
cell and between the analytical column and the analytical cell. The
analytical column was a reverse-phase Hypersil BDS C18 column (4
mm� 25 cm, 5 lm beads). The mobile phase for isocratic elution of
CoQ9 and CoQ10 contained sodium acetate (3.4 g), 8 mL of acetic
acid, 8 mL of 2-propanol, 344 mL of methanol and 80 mL of hexane.
The flow rate of the mobile phase (degassed before use) was 1 mL/min.
The HPLC-EC system was set at room temperature (21� 1 �C).
Preparation of calibrators. Oxidized and reduced forms of CoQs

were identified and quantified using self-made external calibrators. In
an amber balloon, 2 mg of CoQox (Q9 or Q10) was dissolved in 100
mL of 2-propanol. Concentrations of these stock solutions were con-
firmed by measuring absorbance at 275 nm and by reference to known
extinction coefficients (E1%

1cm185 for CoQ9 and 165 for CoQ10). Five ml
of the CoQox stock solutions was diluted in the mobile phase (v/v),
aliquoted and frozen at )80 �C. The rest (95 ml) of each stock solution
was reduced in a loop to )1000 mV in the system pump-guard cell
maintained in the dark for approximately 3 h. The conversion rate of
CoQox to CoQred was around 99%. After 6 months at )80 �C, a loss
of only 2% of CoQred was observed in the reduced stock solutions.
Coulometric detection. To optimize the applied EC potentials in our

HPLC conditions, a hydrodynamic voltamogram was obtained by
repeated injections for all compounds studied. On the basis of the
assessed hydrodynamic voltamogram, and to oxidize any electro-
chemically active eluate, the guard cell potential was always set at
+1000 mV. The E2 and E3 cell potentials were set at )650 and +420
mV, respectively. EC detection in the analytical cell was carried out
after specific reduction of CoQox by E2. Oxidation by E3 then enabled
electron flow to be detected.

2.5. CoQ redox state
This was calculated for CoQ9 and CoQ10 as: ([CoQox]/[total

CoQ])� 100 with [CoQox] + [CoQred]¼ [total CoQ].

2.6. Statistical analysis
Means� S.E.M. were calculated and statistically significant differ-

ences between two groups were determined by Student’s t test at
P < 0:05.

2.7. External analytical quality control
Since 2003, the results of this technique are compared with the an-

alytical quality program organized by the National Institute of Stan-
dard Technology (NIST) (Gaithersburg, USA) on lyophilized serums.
The results are in complete agreement with the median of a four lab-
oratories interassay.
3. Results and discussion

3.1. Analytical conditions

Calibration, reproducibility and sensitivity of chromato-

graphic analysis. CoQ calibrator solution (mixture of the four

diluted stock solutions) was prepared in 2-propanol (or in
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ethanol/hexane) as for biological samples. Fig. 1A shows a

typical chromatogram. The two forms of each CoQ were well

separated from one another. Analysis was fast, with retention

times of 6.0, 7.5, 9.0, and 13.5 min, respectively, for

CoQ9red, CoQ10red, CoQ9ox, and CoQ10ox. For the 4

forms, calibration curves were performed with three different

calibrator solutions. An excellent linear relationship

(r2 ¼+0.99) was observed between the area of the peak (mV/

min) and the molar concentration ratio of each compound

over a wide concentration range (from 10 to 3000 nM).

Variation coefficients were 2.9, 3.5, 3.5 and 3.7% for

CoQ9red, CoQ10red, CoQ9ox and CoQ10ox, respectively.

The limits of detection were 21 pmol for CoQsred and 15

pmol for CoQsox.

Extraction of biological samples. The two extraction condi-

tions were used for quantification of either total CoQ9 or

CoQ10 [2,6,21,22]. However, it was observed that ethanol/

hexane extraction converted the CoQs to the oxidized form

[23].

Fig. 1B shows a typical chromatogram obtained with 2-

propanol extraction. Total CoQ9 (ox and red) recovery was

41.9� 4.2 pmol/106 cells and was not significantly different

from that obtained with ethanol/hexane extraction (38.6� 3.5)

(results not shown). However, there was more CoQ9red (and

less CoQ9ox) with 2-propanol extract than with ethanol/hex-

ane extract (results not shown). In this way, the values of redox

state were 78% with ethanol/hexane and 55% with 2-propanol.
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Fig. 2. CoQ9 redox state after modulation of the mitochondrial re-
spiratory chain electron flow of cultured cells. (A) Cells were treated 60
min with antimycin (An, 2� 10�8 M), rotenone (R, 10�9 M), CCCP
(10�6 M) or 0.4% ethanol (control, C). (B) Cells were treated between 1
and 60 min with An 2� 10�8 M ðjÞ, R 10�9M ðmÞ or 0.4% ethanol
(control, }). These concentrations of An and R inhibit cell respiration
by 15% and the concentration of CCCP increases it by 15%. Results
are expressed as (A) means�S.E.M. (four independent experiments)
or (B) means (two independent experiments). **P < 0:01 and
***P < 0:001 versus (C).
These results show that, compared with ethanol/hexane ex-

traction, 2-propanol extraction protects CoQ from oxidation.

Moreover, when 107 nmol of CoQ9red standard were added

to a cell homogenate and extracted with 2-propanol, total

CoQ9 and CoQ9red recoveries were 98� 2% and 96� 1%,

respectively (results not shown).

Thus, 2-propanol extraction reliably measured CoQ content

or CoQ redox state for biological samples and was used for the

subsequent experiments.

3.2. Biological validation of CoQ redox state by modulation of

mitochondrial electron flow

The measurements of CoQ redox state were biologically

validated using various molecules well known to modify elec-

tron flow at different levels of the respiratory chain. Thus,
CoQ10 redox state (%)
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Fig. 3. Linear regression between CoQ redox state, CoQ content or
between CoQ9 content and CoQ9 redox state in tissues* of control
rats. (A) CoQ9 redox state as a function of CoQ10 redox state, (B)
CoQ10 content as a function of CoQ9 content and (C) CoQ9 redox
state as a function of CoQ9 content in lung ð}Þ, spleen ðnÞ, glycolytic
muscle ðrÞ, oxidative muscle ( – ), heart ðdÞ, kidney ðmÞ and liver ðjÞ.
*Testis ð�Þ was not taken into consideration for the determination of
linear regression between CoQ9 redox state and CoQ9 content. Results
are expressed as means�S.E.M. for six rats.
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56 A. Galinier et al. / FEBS Letters 578 (2004) 53–57
rotenone and antimycin, inhibitors of complexes I and III, re-

spectively, were chosen to inhibit mitochondrial electron flow

and CCCP to increase it [24–26]. By inhibiting electron flow at

the level of complex I, rotenone limits CoQ reduction and en-

hances CoQ oxidation. On the other hand, antimycin, by

blocking the electron flow at the level of the Q-cycle, helps to

maintain CoQ reduction. CCCP, acting as a protonophore,

dissipates the transmembrane proton gradient, reduces the

constraints on the mitochondrial respiratory chain and en-

hances CoQ oxidation. Fig. 2A illustrates the effects of these

molecules on CoQ9 redox state after one hour of incubation. As

expected, CoQ9 redox state was significantly decreased in the

presence of antimycin and significantly increased in the presence

of rotenone and CCCP. Similar results were obtained with

CoQ10 (results not shown). The kinetics of the CoQ redox

states were determined between 1 and 60 min after addition of

rotenone or antimycin. These molecules induced a marked

modification of CoQ9 redox state within 1 min (Fig. 2B).

Similar results were obtained with CoQ10 (results not shown).

These results represent detection of the reduced and oxidized

forms as expected under the experimental conditions de-

scribed. They biologically validate the measurement of CoQs

redox states in complex biological matrixes despite sample

handling. It was noteworthy that a slight change in respiratory

chain activity rapidly influenced the whole cellular CoQ redox

state.
3.3. Relationship between CoQ redox state and CoQ content in

rat control tissues

Fig. 3A shows a positive linear regression between CoQ9

redox state and CoQ10 redox state of different tissues

(slope¼ 0.858). CoQ9 and CoQ10 redox states thus have ap-

proximatively the same value for a given tissue, but values vary

between different tissues. On the whole, we obtained higher

proportions of reduced CoQ than authors who used a more

complex extraction method and HPLC-UV detection [27].

However, we observed proportions of oxidized CoQ9 similar to

those obtained recently in mouse tissues (lung, liver andmuscle)

[18]. Fig. 3B shows a positive linear regression between CoQ10

content and CoQ9 content. So, in each tissue, CoQ9 and CoQ10

contents vary in the same proportion. We observed that each

tissue is characterized not only by its redox state but also by its

CoQ9 content. For example, liver and lung (Fig. 3C) have the

highest and lowest CoQ9 contents but are characterized by a

low and a high redox state, respectively. Testis CoQ9 seems

protected from oxidation, perhaps by the presence of high levels

of other antioxidants, such as a-tocopherol as described in

spermatozoa [28]. Finally, we demonstrated for the different

tissues (testis excluded) a negative linear regression between

CoQ9 redox state and CoQ9 content (Fig. 3C) and between

CoQ10 redox state and CoQ10 content (results not shown).

These results indicate that for most rat control tissues, CoQ

redox state is strongly linked to CoQ content, for both CoQ9
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and CoQ10. It appears that, in physiological conditions, tis-

sular CoQ content determines the CoQ redox state (or recip-

rocally).
3.4. CoQ redox state and CoQ content in tissues of rats

subjected to hypoxia

Hypoxia occurs in various conditions (vascular and pul-

monary diseases or cancer) [29] and is associated with mito-

chondrial oxidative stress [19] whose intensity varies according

to the tissue. After hypoxia, CoQ10 was modified only in the

heart. This tissue showed significantly higher values of CoQ10

content and CoQ10 redox state than controls (results not

shown).

Fig. 4 shows the relationship between CoQ9 redox state and

CoQ9 content in different tissues (liver, kidney, testis, heart

and lung) of rats under hypoxic or normoxic conditions.

Comparatively to control tissues, liver, kidney and testis of

rats under hypoxia showed higher values in CoQ9 redox state

(4.34� 0.52% versus 14.90� 0.62, P < 0:001; 11.48� 3.25

versus 26.59� 0.67, P < 0:05; 9.62� 2.00 versus 18.45� 0.10,

P < 0:05 respectively) and lower values in CoQ9 content

(402.08� 52.84 nmol/g of tissue versus 138.97� 2.24, P < 0:05;
236.38� 23.06 versus 140.85� 1.56, P < 0:05; 72.37� 7.23

versus 28.90� 3.23, P < 0:05). Moreover, there was a negative

linear regression between these two parameters. This increase

in CoQ9 redox state is consistent with the mitochondrial oxi-

dative stress described during hypoxia [19]. Comparatively to

controls, heart from rats under hypoxia showed high values in

CoQ9 redox state (20.69� 5.60% versus 68.83� 3.08,

P < 0:01) and similar values in CoQ9 content (207.03� 23.56

nmol/g of tissue versus 222.77� 13.83, ns). Comparatively to

controls, lung from hypoxic rats showed similar values in

CoQ9 redox state (37.92� 4.83% versus 45.47� 1.63, ns) and

lower values in CoQ9 content (15.07� 2.74 nmol/g of tissue

versus 6.38� 0.29, P < 0:05). However, no significant linear

regression between CoQ9 redox state and CoQ9 content was

observed in heart and lung. This can be explained by different

adaptive responses of tissues for these CoQ parameters during

low oxygen tension. Indeed, it is well known that some tissues

(lung, heart) are able to extract variable oxygen concentrations

and then adapt well to hypoxia [30]. Our results agree with a

previous study in which HIF-1a, a marker reciprocally regu-

lated by oxygen tension, was strongly detected in liver, kidney,

spleen and muscle of mice subjected to 6% hypoxia but was

present at a low level in the heart and absent in the lung [31].

In conclusion, this study suggests that evaluation of CoQ

content and redox state is necessary to improve our knowledge

of cellular CoQ regulation. Moreover, it emphasizes the tissue

specificity of CoQ redox control in pathological situations

associated with mitochondrial dysfunction.
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