112 research outputs found

    Prediction of forbidden ultraviolet and visible emissions in comet 67P/Churyumov-Gerasimenko

    Full text link
    Remote observation of spectroscopic emissions is a potential tool for the identification and quantification of various species in comets. CO Cameron band (to trace \cod) and atomic oxygen emissions (to trace H2_2O and/or CO2_2, CO) have been used to probe neutral composition in the cometary coma. Using a coupled-chemistry emission model, various excitation processes controlling CO Cameron band and different atomic oxygen and atomic carbon have been modelled in comet 67P-Churyumov-Gerasimenko at 1.29~AU (perihelion) and at 3~AU heliocentric distances, which is being explored by ESA's Rosetta mission. The intensities of CO Cameron band, atomic oxygen and atomic carbon emission lines as a function of projected distance are calculated for different CO and CO2_2 volume mixing ratios relative to water. Contributions of different excitation processes controlling these emissions are quantified. We assess how CO2_2 and/or CO volume mixing ratios with respect to H2_2O can be derived based on the observed intensities of CO Cameron band, atomic oxygen, and atomic carbon emission lines.The results presented in this work serve as base line calculations to understand the behaviour of low out-gassing cometary coma and compare them with the higher gas production rate cases (e.g. comet Halley). Quantitative analysis of different excitation processes governing the spectroscopic emissions is essential to study the chemistry of inner coma and to derive neutral gas composition.Comment: 46 pages, 12 figures, Accepted in The Astrophysical Journa

    On the importance of the cross-body approach in planetary aeronomy

    Get PDF
    Cross-disciplinary and cross-body approaches can be applied to study universal processes occurring in the heliosphere. Magnetospheric, interplanetary, and heliospheric plasmas, all of which are low density plasmas, host similar processes. A cross-disciplinary approach is thus of great relevance for a universal understanding of processes occurring within these various plasmas. On the other hand, the upper atmosphere of planets and moons are a highly collisional medium acting differently compared to a collisionless plasma. Therefore, the comparative study between solar system bodies hosting atmospheres under different settings is a more suitable approach for assessing universal processes in aeronomy. For the past several years the aeronomy community has undertaken many initiatives in comparative studies of solar system atmospheres. We highlight the maturity of this field and illustrate its relevance by applying the comparative approach to key scientific topics. We would like to encourage aeronomers interested in comparative studies to consider participating to International Heliophysical Year (IHY) focused activities. More information on the comparative initiative can be found at the IHY website (http://ihy.gsfc.nasa.gov/) as well as at: http://www.bu.edu/csp/uv/ cp-aeronomy/aeronomy-sol-sys.html

    Cometary Ionospheres: An Updated Tutorial

    Get PDF
    This chapter aims at providing the tools and knowledge to understand and model the plasma environment surrounding comets in the innermost part near the nucleus. In particular, our goal is to give an updated post-Rosetta view of this ionised environment: what we knew, what we confirmed, what we overturned, and what we still do not understand.Comment: 41 pages, 14 figures, 3 tables; To be published in Comets III (2023), K. J. Meech and M. Combi (Eds.), University of Arizona Press, Tucso

    Saturn's atmospheric response to the large influx of ring material inferred from Cassini INMS measurements

    Full text link
    During the Grand Finale stage of the Cassini mission, organic-rich ring material was discovered to be flowing into Saturn's equatorial upper atmosphere at a surprisingly large rate. Through a series of photochemical models, we have examined the consequences of this ring material on the chemistry of Saturn's neutral and ionized atmosphere. We find that if a substantial fraction of this material enters the atmosphere as vapor or becomes vaporized as the solid ring particles ablate upon atmospheric entry, then the ring-derived vapor would strongly affect the composition of Saturn's ionosphere and neutral stratosphere. Our surveys of Cassini infrared and ultraviolet remote-sensing data from the final few years of the mission, however, reveal none of these predicted chemical consequences. We therefore conclude that either (1) the inferred ring influx represents an anomalous, transient situation that was triggered by some recent dynamical event in the ring system that occurred a few months to a few tens of years before the 2017 end of the Cassini mission, or (2) a large fraction of the incoming material must have been entering the atmosphere as small dust particles less than ~100 nm in radius, rather than as vapor or as large particles that are likely to ablate. Future observations or upper limits for stratospheric neutral species such as HC3_3N, HCN, and CO2_2 at infrared wavelengths could shed light on the origin, timing, magnitude, and nature of a possible vapor-rich ring-inflow event.Comment: accepted in Icaru

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    The Comet Interceptor Mission

    Get PDF
    Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA's F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ΔV capability of 600 ms-1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes - B1, provided by the Japanese space agency, JAXA, and B2 - that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission's science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule

    Principles Of Heliophysics: a textbook on the universal processes behind planetary habitability

    Full text link
    This textbook gives a perspective of heliophysics in a way that emphasizes universal processes from a perspective that draws attention to what provides Earth (and similar (exo-)planets) with a relatively stable setting in which life as we know it can thrive. The book is intended for students in physical sciences in later years of their university training and for beginning graduate students in fields of solar, stellar, (exo-)planetary, and planetary-system sciences.Comment: 419 pages, 119 figures, and 200 "activities" in the form of problems, exercises, explorations, literature readings, and "what if" challenge

    Auroral Processes at the Giant Planets: Energy Deposition, Emission Mechanisms, Morphology and Spectra

    Full text link
    corecore