1,237 research outputs found

    D:A4.1 Socio-economic impact assessment

    Get PDF
    The executive summary ends with six concise recommendations for facilitating more accountability for data management in cloud ecosystems: 1. Provide a stronger legal base for and enforcement of data protection and accountable behavior; 2. Facilitate independent auditing of responsible data stewardship; 3. Increase public awareness of the need for accountability; 4. Balance existing information asymmetries via partnerships; 5. Focus on larger enterprises working in the public sector first, as these can serve as an example for other types of businesses; 6. Demonstrate how A4Cloud tools and mechanisms can be turned into a business model in order to encourage greater uptake and use

    Non-standard interactions versus non-unitary lepton flavor mixing at a neutrino factory

    Full text link
    The impact of heavy mediators on neutrino oscillations is typically described by non-standard four-fermion interactions (NSIs) or non-unitarity (NU). We focus on leptonic dimension-six effective operators which do not produce charged lepton flavor violation. These operators lead to particular correlations among neutrino production, propagation, and detection non-standard effects. We point out that these NSIs and NU phenomenologically lead, in fact, to very similar effects for a neutrino factory, for completely different fundamental reasons. We discuss how the parameters and probabilities are related in this case, and compare the sensitivities. We demonstrate that the NSIs and NU can, in principle, be distinguished for large enough effects at the example of non-standard effects in the μ\mu-τ\tau-sector, which basically corresponds to differentiating between scalars and fermions as heavy mediators as leading order effect. However, we find that a near detector at superbeams could provide very synergistic information, since the correlation between source and matter NSIs is broken for hadronic neutrino production, while NU is a fundamental effect present at any experiment.Comment: 32 pages, 5 figures. Final version published in JHEP. v3: Typo in Eq. (27) correcte

    Genetics of human hydrocephalus

    Get PDF
    Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human hydrocephalus. This review summarizes the recent findings on this issue among human and animal models, especially with reference to the molecular genetics, pathological, physiological and cellular studies, and identifies future research directions

    Statistical parametric maps of (18)F-FDG PET and 3-D autoradiography in the rat brain: a cross-validation study

    Get PDF
    PURPOSE: Although specific positron emission tomography (PET) scanners have been developed for small animals, spatial resolution remains one of the most critical technical limitations, particularly in the evaluation of the rodent brain. The purpose of the present study was to examine the reliability of voxel-based statistical analysis (Statistical Parametric Mapping, SPM) applied to (18)F-fluorodeoxyglucose (FDG) PET images of the rat brain, acquired on a small animal PET not specifically designed for rodents. The gold standard for the validation of the PET results was the autoradiography of the same animals acquired under the same physiological conditions, reconstructed as a 3-D volume and analysed using SPM. METHODS: Eleven rats were studied under two different conditions: conscious or under inhalatory anaesthesia during (18)F-FDG uptake. All animals were studied in vivo under both conditions in a dedicated small animal Philips MOSAIC PET scanner and magnetic resonance images were obtained for subsequent spatial processing. Then, rats were randomly assigned to a conscious or anaesthetized group for postmortem autoradiography, and slices from each animal were aligned and stacked to create a 3-D autoradiographic volume. Finally, differences in (18)F-FDG uptake between conscious and anaesthetized states were assessed from PET and autoradiography data by SPM analysis and results were compared. RESULTS: SPM results of PET and 3-D autoradiography are in good agreement and led to the detection of consistent cortical differences between the conscious and anaesthetized groups, particularly in the bilateral somatosensory cortices. However, SPM analysis of 3-D autoradiography also highlighted differences in the thalamus that were not detected with PET. CONCLUSION: This study demonstrates that any difference detected with SPM analysis of MOSAIC PET images of rat brain is detected also by the gold standard autoradiographic technique, confirming that this methodology provides reliable results, although partial volume effects might make it difficult to detect slight differences in small regions

    Factors driving patterns and trends in strandings of small cetaceans

    Get PDF
    The incidence of cetacean strandings is expected to depend on a combination of factors, including the dis- tribution and abundance of the cetaceans, their prey, and causes of mortality (e.g. natural, fishery bycatch), as well as currents and winds which affect whether carcasses reach the shore. We investigated spatiotemporal patterns and trends in the numbers of strandings of three species of small cetacean in Galicia (NW Spain) and their relationships with meteoro- logical, oceanographic, prey abundance and fishing-related variables, aiming to disentangle the relationship that may exist between these factors, cetacean abundance and mor- tality off the coast. Strandings of 1166 common dolphins (Delphinus delphis), 118 bottlenose dolphins (Tursiops truncatus) and 90 harbour porpoises (Phocoena phocoena) during 2000–2013 were analysed. Generalised additive and generalised additive-mixed model results showed that the variables which best explained the pattern of strandings of the three cetacean species were those related with local ocean meteorology (strength and direction of the North– South component of the winds and the number of days with South-West winds) and the winter North Atlantic Oscil- lation Index. There were no significant relationships with indices of fishing effort or landings. Only bottlenose dolphin showed possible fluctuations in local abundance over the study period. There was no evidence of long-term trends in number of strandings in any of the species and their abun- dances were, therefore, considered to have been relatively stable during the study period.Versión del editor2,01

    Non-Standard Interactions at a Neutrino Factory: Correlations and CP violation

    Full text link
    We explore the potential of several Neutrino Factory (NF) setups to constrain, discover and measure new physics effects due to Non-Standard Interactions (NSI) in propagation through Earth matter. We first study the impact of NSI in the measurement of θ13\theta_{13}: we find that these could be large due to strong correlations of θ13\theta_{13} with NSI parameters in the golden channel, and the inclusion of a detector at the magic baseline is crucial in order to reduce them as much as possible. We present, then, the sensitivity of the considered NF setups to the NSI parameters, paying special attention to correlations arising between them and the standard oscillation parameters, when all NSI parameters are introduced at once. Off-diagonal NSI parameters could be tested down to the level of 10310^{-3}, whereas the diagonal combinations (ϵeeϵττ)(\epsilon_{ee} - \epsilon_{\tau\tau}) and (ϵμμϵττ)(\epsilon_{\mu\mu}-\epsilon_{\tau\tau}) can be tested down to 10110^{-1} and 10210^{-2}, respectively. The possibilities of observing CP violation in this context are also explored, by presenting a first scan of the CP discovery potential of the NF setups to the phases ϕeμ,ϕeτ\phi_{e\mu}, \phi_{e\tau} and δ\delta. We study separately the case where CP violation comes only from non-standard sources, and the case where it is entangled with the standard source, δ\delta. In case δ\delta turns out to be CP conserving, the interesting possibility of observing CP violation for reasonably small values of the NSI parameters emerges.Comment: Final note added. 38 pages, 11 figure
    corecore