1,022 research outputs found

    Sperm size evolution

    Get PDF
    Sperm length unexpectedly varies more than 3,000-fold across species, posing new questions for anisogamy theory and understanding the different forces shaping evolution of the male gamete

    Post-copulatory opportunities for sperm competition and cryptic female choice provide no offspring fitness benefits in externally fertilizing salmon

    Get PDF
    There is increasing evidence that females can somehow improve their offspring fitness by mating with multiple males, but we understand little about the exact stage(s) at which such benefits are gained. Here, we measure whether offspring fitness is influenced by mechanisms operating solely between sperm and egg. Using externally-fertilising and polyandrous Atlantic salmon (Salmo salar), we employed split-clutch and split-ejaculate in vitro fertilisation experiments to generate offspring using designs that either denied or applied opportunities for sperm competition and cryptic female choice. Following fertilisations, we measured 140 days of offspring fitness after hatch, through growth and survival in hatchery and near-natural conditions. Despite an average composite mortality of 61%, offspring fitness at every life stage was near-identical between groups fertilised under the absence versus presence of opportunities for sperm competition and cryptic female choice. Of the 21,551 and 21,771 eggs from 24 females fertilised under monandrous versus polyandrous conditions, 68% versus 67.8% survived to the 100-day juvenile stage; sub-samples showed similar hatching success (73.1% versus 74.3%), had similar survival over 40 days in near-natural streams (57.3% versus 56.2%), and grew at similar rates throughout. We therefore found no evidence that gamete-specific interactions allow offspring fitness benefits when polyandrous fertilisation conditions provide opportunities for sperm competition and cryptic female choice

    Cryptic choice of conspecific sperm controlled by the impact of ovarian fluid on sperm swimming behavior

    Get PDF
    Despite evidence that variation in male–female reproductive compatibility exists in many fertilization systems, identifying mechanisms of cryptic female choice at the gamete level has been a challenge. Here, under risks of genetic incompatibility through hybridization, we show how salmon and trout eggs promote fertilization by conspecific sperm. Using in vitro fertilization experiments that replicate the gametic microenvironment, we find complete interfertility between both species. However, if either species’ ova were presented with equivalent numbers of both sperm types, conspecific sperm gained fertilization precedence. Surprisingly, the species’ identity of the eggs did not explain this cryptic female choice, which instead was primarily controlled by conspecific ovarian fluid, a semiviscous, protein-rich solution that bathes the eggs and is released at spawning. Video analyses revealed that ovarian fluid doubled sperm motile life span and straightened swimming trajectory, behaviors allowing chemoattraction up a concentration gradient. To confirm chemoattraction, cell migration tests through membranes containing pores that approximated to the egg micropyle showed that conspecific ovarian fluid attracted many more spermatozoa through the membrane, compared with heterospecific fluid or water. These combined findings together identify how cryptic female choice can evolve at the gamete level and promote reproductive isolation, mediated by a specific chemoattractive influence of ovarian fluid on sperm swimming behavior

    Tribolium beetles as a model system in evolution and ecology

    Get PDF
    Flour beetles of the genus Tribolium have been utilised as informative study systems for over a century and contributed to major advances across many fields. This review serves to highlight the significant historical contribution that Tribolium study systems have made to the fields of ecology and evolution, and to promote their use as contemporary research models. We review the broad range of studies employing Tribolium to make significant advances in ecology and evolution. We show that research using Tribolium beetles has contributed a substantial amount to evolutionary and ecological understanding, especially in the fields of population dynamics, reproduction and sexual selection, population and quantitative genetics, and behaviour, physiology and life history. We propose a number of future research opportunities using Tribolium, with particular focus on how their amenability to forward and reverse genetic manipulation may provide a valuable complement to other insect models

    Micropyle number is associated with elevated female promiscuity in Lepidoptera

    Get PDF
    In the majority of insects, sperm fertilize the egg via a narrow canal through the outer chorion called the micropyle. Despite having this one primary function, there is considerable unexplained variation in the location, arrangement and number of micropyles within and between species. Here, we examined the relationship between micropyle number and female mating pattern through a comparative analysis across Lepidoptera. Three functional hypotheses could explain profound micropylar variation: (i) increasing micropyle number reduces the risk of infertility through sperm limitation in species that mate infrequently; (ii) decreasing micropyle number reduces the risk of pathological polyspermy in species that mate more frequently; and (iii) increasing micropyle number allows females to exert greater control over fertilization within the context of post-copulatory sexual selection, which will be more intense in promiscuous species. Micropyle number was positively related to the degree of female promiscuity as measured by spermatophore count, regardless of phylogenetic signal, supporting the hypothesis that micropyle number is shaped by post-copulatory sexual selection. We discuss this finding in the context of cryptic female choice, sperm limitation and physiological polyspermy

    Experimental evolution reveals that sperm competition intensity selects for longer, more costly sperm

    Get PDF
    It is the differences between sperm and eggs that fundamentally underpin the differences between the sexes within reproduction. For males, it is theorized that widespread sperm competition leads to selection for investment in sperm numbers, achieved by minimizing sperm size within limited resources for spermatogenesis in the testis. Here, we empirically examine how sperm competition shapes sperm size, after more than 77 generations of experimental selection of replicate lines under either high or low sperm competition intensities in the promiscuous flour beetle Tribolium castaneum. After this experimental evolution, populations had diverged significantly in their sperm competitiveness, with sperm in ejaculates from males evolving under high sperm competition intensities gaining 20% greater paternity than sperm in ejaculates from males that had evolved under low sperm competition intensity. Males did not change their relative investment into sperm production following this experimental evolution, showing no difference in testis sizes between high and low intensity regimes. However, the more competitive males from high sperm competition intensity regimes had evolved significantly longer sperm and, across six independently selected lines, there was a significant association between the degree of divergence in sperm length and average sperm competitiveness. To determine whether such sperm elongation is costly, we used dietary restriction experiments, and revealed that protein-restricted males produced significantly shorter sperm. Our findings therefore demonstrate that sperm competition intensity can exert positive directional selection on sperm size, despite this being a costly reproductive trait

    Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect

    Get PDF
    Climate change is affecting biodiversity, but proximate drivers remain poorly understood. Here, we examine how experimental heatwaves impact on reproduction in an insect system. Male sensitivity to heat is recognised in endotherms, but ectotherms have received limited attention, despite comprising most of biodiversity and being more influenced by temperature variation. Using a flour beetle model system, we find that heatwave conditions (5 to 7 °C above optimum for 5 days) damaged male, but not female, reproduction. Heatwaves reduce male fertility and sperm competitiveness, and successive heatwaves almost sterilise males. Heatwaves reduce sperm production, viability, and migration through the female. Inseminated sperm in female storage are also damaged by heatwaves. Finally, we discover transgenerational impacts, with reduced reproductive potential and lifespan of offspring when fathered by males, or sperm, that had experienced heatwaves. This male reproductive damage under heatwave conditions provides one potential driver behind biodiversity declines and contractions through global warming

    Experimental evolution with an insect model reveals that male homosexual behaviour occurs due to inaccurate mate choice

    Get PDF
    The existence of widespread male same-sex sexual behaviour (SSB) is puzzling: why does evolution allow costly homosexual activity to exist, when reproductive fitness is primarily achieved through heterosexual matings? Here, we used experimental evolution to understand why SSB occurs in the flour beetle Tribolium castaneum. By varying the adult operational sex ratio across 82–106 generations, we created divergent evolutionary regimes that selected for or against SSB depending upon its function. Male-biased (90:10 M:F) regimes generated strong selection on males from intrasexual competition, and demanded improved ability to locate and identify female mates. By contrast, Female-biased regimes (10:90 M:F) generated weak male–male competition, and relaxed selection on mate-searching abilities in males. If male SSB functions through sexually selected male–male competition, it should be more evident within Male-biased regimes, where reproductive competition is nine times greater, than in the Female-biased regimes. By contrast, if SSB exists due to inaccurate mate choice, it should be reduced in Male-biased regimes, where males experience stronger selection for improved mate finding and discrimination abilities than in the Female-biased regime, where most potential mating targets are female. Following these divergent evolutionary regimes, we measured male engagement in SSB through choice experiments simultaneously presenting female and male mating targets. Males from both regimes showed similar overall levels of mating activity. However, there were significant differences in levels of SSB between the two regimes: males that evolved through male-biased operational sex ratios located, mounted and mated more frequently with the female targets. By contrast, males from female-biased selection histories mated less frequently with females, exhibiting almost random choice between male and female targets in their first mating attempt. Following experimental evolution, we therefore conclude that SSB does not function through sexually selected male–male competition, but instead occurs because males fail to perfectly discriminate females as mates

    Sexual selection protects against extinction

    Get PDF
    Reproduction through sex carries substantial costs, mainly because only half of sexual adults produce offspring1. It has been theorized that these costs could be countered if sex allows sexual selection to clear the universal fitness constraint of mutation load2,3,4. Under sexual selection, competition between (usually) males and mate choice by (usually) females create important intraspecific filters for reproductive success, so that only a subset of males gains paternity. If reproductive success under sexual selection is dependent on individual condition, which is contingent to mutation load, then sexually selected filtering through ‘genic capture’5 could offset the costs of sex because it provides genetic benefits to populations. Here we test this theory experimentally by comparing whether populations with histories of strong versus weak sexual selection purge mutation load and resist extinction differently. After evolving replicate populations of the flour beetle Tribolium castaneum for 6 to 7 years under conditions that differed solely in the strengths of sexual selection, we revealed mutation load using inbreeding. Lineages from populations that had previously experienced strong sexual selection were resilient to extinction and maintained fitness under inbreeding, with some families continuing to survive after 20 generations of sib × sib mating. By contrast, lineages derived from populations that experienced weak or non-existent sexual selection showed rapid fitness declines under inbreeding, and all were extinct after generation 10. Multiple mutations across the genome with individually small effects can be difficult to clear, yet sum to a significant fitness load; our findings reveal that sexual selection reduces this load, improving population viability in the face of genetic stress.We thank the Natural Environment Research Council and the Leverhulme Trust for financial support, D. Edward for statistical advice and colleagues at the 2013 Biology of Sperm meeting for comments that improved analytical design and interpretation.Peer reviewedPeer Reviewe

    Frequency-dependent viscosity of salmon ovarian fluid has biophysical implications for sperm–egg interactions

    Get PDF
    Gamete-level sexual selection of externally fertilising species is usually achieved by modifying sperm behaviour with mechanisms that alter the chemical environment in which gametes perform. In fish, this can be accomplished through the ovarian fluid, a substance released with the eggs at spawning. While the biochemical effects of ovarian fluid in relation to sperm energetics have been investigated, the influence of the physical environment in which sperm compete remains poorly explored. Our objective was therefore to gain insights on the physical structure of this fluid and potential impacts on reproduction. Using soft-matter physics approaches of steady-state and oscillatory viscosity measurements, we subjected wild Atlantic salmon ovarian fluids to variable shear stresses and frequencies resembling those exerted by sperm swimming through the fluid near eggs. We show that this fluid, which in its relaxed state is a gel-like substance, displays a non-Newtonian viscoelastic and shear-thinning profile, where the viscosity decreases with increasing shear rates. We concurrently find that this fluid obeys the Cox–Merz rule below 7.6 Hz and infringes it above this level, thus indicating a shear-thickening phase where viscosity increases provided it is probed gently enough. This suggests the presence of a unique frequency-dependent structural network with relevant implications for sperm energetics and fertilisation dynamics
    corecore