27 research outputs found

    Olanzapine-Induced Hyperphagia and Weight Gain Associate with Orexigenic Hypothalamic Neuropeptide Signaling without Concomitant AMPK Phosphorylation

    Get PDF
    The success of antipsychotic drug treatment in patients with schizophrenia is limited by the propensity of these drugs to induce hyperphagia, weight gain and other metabolic disturbances, particularly evident for olanzapine and clozapine. However, the molecular mechanisms involved in antipsychotic-induced hyperphagia remain unclear. Here, we investigate the effect of olanzapine administration on the regulation of hypothalamic mechanisms controlling food intake, namely neuropeptide expression and AMP-activated protein kinase (AMPK) phosphorylation in rats. Our results show that subchronic exposure to olanzapine upregulates neuropeptide Y (NPY) and agouti related protein (AgRP) and downregulates proopiomelanocortin (POMC) in the arcuate nucleus of the hypothalamus (ARC). This effect was evident both in rats fed ad libitum and in pair-fed rats. Of note, despite weight gain and increased expression of orexigenic neuropeptides, subchronic administration of olanzapine decreased AMPK phosphorylation levels. This reduction in AMPK was not observed after acute administration of either olanzapine or clozapine. Overall, our data suggest that olanzapine-induced hyperphagia is mediated through appropriate changes in hypothalamic neuropeptides, and that this effect does not require concomitant AMPK activation. Our data shed new light on the hypothalamic mechanism underlying antipsychotic-induced hyperphagia and weight gain, and provide the basis for alternative targets to control energy balance

    From METS to malaria: RRx-001, a multi-faceted anticancer agent with activity in cerebral malaria

    Get PDF
    BACKGROUND: The survival of malaria parasites, under substantial haem-induced oxidative stress in the red blood cells (RBCs) is dependent on the pentose phosphate pathway (PPP). The PPP is the only source of NADPH in the RBC, essential for the production of reduced glutathione (GSH) and for protection from oxidative stress. Glucose-6-phosphate dehydrogenase (G6PD) deficiency, therefore, increases the vulnerability of erythrocytes to oxidative stress. In Plasmodium, G6PD is combined with the second enzyme of the PPP to create a unique bifunctional enzyme, named glucose-6-phosphate dehydrogenase–6-phosphogluconolactonase (G6PD-6PGL). RRx-001 is a novel, systemically non-toxic, epigenetic anticancer agent currently in Phase 2 clinical development for multiple tumour types, with activity mediated through increased nitric oxide (NO) production and PPP inhibition. The inhibition of G6PD and NO overproduction induced by RRx-001 suggested its application in cerebral malaria (CM). METHODS: Plasmodium berghei ANKA (PbA) infection in C57BL/6 mice is an experimental model of cerebral malaria (ECM) with several similar pathological features to human CM. This study uses intravital microscopy methods with a closed cranial window model to quantify cerebral haemodynamic changes and leukocyte adhesion to endothelial cells in ECM. RESULTS: RRx-001 had both single agent anti-parasitic activity and significantly increased the efficacy of artemether. In addition, RRx-001 preserved cerebral perfusion and reduced inflammation alone or combined with artemether. RRx-001’s effects were associated with inhibition of PPP (G6PD and G6PD-6PGL) and by improvements in microcirculatory flow, which may be related to the NO donating properties of RRx-001. CONCLUSION: The results indicate that RRx-001 could be used to potentiate the anti-malarial action of artemisinin, particularly on resistant strains, and to prevent infection

    The petrogenesis of sodic island arc magmas at Savo volcano, Solomon Islands

    Get PDF
    Savo, Solomon Islands, is a historically active volcano dominated by sodic, alkaline lavas, and pyroclastic rocks with up to 7.5 wt% Na2O, and high Sr, arc-like trace element chemistry. The suite is dominated by mugearites (plagioclase–clinopyroxene–magnetite ± amphibole ± olivine) and trachytes (plagioclase–amphibole–magnetite ± biotite). The presence of hydrous minerals (amphibole, biotite) indicates relatively wet magmas. In such melts, plagioclase is relatively unstable relative to iron oxides and ferromagnesian silicates; it is the latter minerals (particularly hornblende) that dominate cumulate nodules at Savo and drive the chemical differentiation of the suite, with a limited role for plagioclase. This is potentially occurring in a crustal “hot zone”, with major chemical differentiation occurring at depth. Batches of magma ascend periodically, where they are subject to decompression, water saturation and further cooling, resulting in closed-system crystallisation of plagioclase, and ultimately the production of sodic, crystal and feldspar-rich, high-Sr rocks. The sodic and hydrous nature of the parental magmas is interpreted to be the result of partial melting of metasomatised mantle, but radiogenic isotope data (Pb, Sr, Nd) cannot uniquely identify the source of the metasomatic agent. Electronic supplementary material The online version of this article (doi:10.1007/s00410-009-0410-9) contains supplementary material, which is available to authorized users

    Sonic hedgehog gene therapy increases the ability of the dystrophic skeletal muscle to regenerate after injury

    No full text
    The Hedgehog (Hh) pathway is a crucial regulator of muscle development during embryogenesis. We have previously demonstrated that Sonic hedgehog (Shh) regulates postnatal myogenesis in the adult skeletal muscle both directly, by acting on muscle satellite cells, and indirectly, by promoting the production of growth factors from interstitial fibroblasts. Here, we show that in mdx mice, the murine equivalent of Duchenne muscular dystrophy in humans, progression of the dystrophic pathology corresponds to progressive inhibition of the Hh signaling pathway in the skeletal muscle. We also show that the upregulation of the Hh pathway in response to injury and during regeneration is significantly impaired in mdx muscle. Shh treatment increases the proliferative potential of satellite cells isolated from the muscles of mdx mice. This treatment also increases the production of proregenerative factors, such as insulin-like growth factor-1 and vascular endothelial growth factor, from fibroblasts isolated from the muscle of mdx mice. In vivo, overexpression of the Hh pathway using a plasmid encoding the human Shh gene promotes successful regeneration after injury in terms of increased number of proliferating myogenic cells and newly formed myofibers, as well as enhanced vascularization and decreased fibrosis.Gene Therapy advance online publication, 27 February 2014; doi:10.1038/gt.2014.13
    corecore