1,422 research outputs found

    ATLAS sensitivity range for the x_s measurement

    Get PDF
    Previous results for the prospects of B_s mixing measurement in the ATLAS experiment at LHC are updated. The improved analysis method of the studied decay channels B_s -> D_s pi and B_s -> D_s a_1, combined with most recent values for the branching ratios and the B_s lifetime, leads to the new ATLAS sensitivity range for the x_s measurement: x_s^{max} = 42. An extensive study is done in order to estimate how x_s^{max} is influenced by the B-decay proper-time resolution of the vertex detector, as well as by the number of events and by the signal-to-background ratio.Comment: 17 pages, incl. 12 figure

    Thermo-kinetic approach of single-particles and clusters involving anomalous diffusion under viscoelastic response

    Full text link
    We present a thermo-kinetic description of anomalous diffusion of single-particles and clusters in a viscoelastic medium in terms of a non-Markovian diffusion equation involving memory functions. The scaling behaviour of these functions is analyzed by considering hydrodynamics and cluster-size space random walk arguments. We explain experimental results on diffusion of Brownian particles in the cytoskeleton, in cluster-cluster aggregation and in a suspension of micelles.Comment: To be published in the Journal of Physical Chemistry

    Finite-size effects in intracellular microrheology

    Full text link
    We propose a model to explain finite-size effects in intracellular microrheology observed in experiments. The constrained dynamics of the particles in the intracellular medium, treated as a viscoelastic medium, is described by means of a diffusion equation in which interactions of the particles with the cytoskeleton are modelled by a harmonic force. The model reproduces the observed power-law behavior of the mean-square displacement in which the exponent depends on the ratio between particle-to-cytoskeleton-network sizes.Comment: 6 pages 2 figures. To appear in the Journal of Chemical Physic

    Evaluation of Muscle Imbalances and the Presence of Upper- and Lower-Crossed Syndromes among Powerlifters

    Get PDF
    Please view abstract in the attached PDF fil

    AC-coupled GaAs microstrip detectors with a new type of integrated bias resistors

    Get PDF
    Full size single-sided GaAs microstrip detectors with integrated coupling capacitors and bias resistors have been fabricated on 3'' substrate wafers. PECVD deposited SiO_2 and SiO_2/Si_3N_4 layers were used to provide coupling capacitaces of 32.5 pF/cm and 61.6 pF/cm, respectively. The resistors are made of sputtered CERMET using simple lift of technique. The sheet resistivity of 78 kOhm/sq. and the thermal coefficient of resistance of less than 4x10^-3 / degree C satisfy the demands of small area biasing resistors, working on a wide temperature range.Comment: 20 pages, 9 figures, to be published in NIM

    Thermodynamics and dynamics of the formation of spherical lipidic vesicles

    Get PDF
    We propose a free energy expression accounting for the formation of spherical vesicles from planar lipidic membranes and derive a Fokker-Planck equation for the probability distribution describing the dynamics of vesicle formation. We found that formation may occur as an activated process for small membranes and as a transport process for sufficiently large membranes. We give explicit expressions for the transition rates and the characteristic time of vesicle formation in terms of the relevant physical parameters.Comment: 14pgs, 6 figures, sendo to Jour. Phys. Bio

    Cholinergic signals preserve haematopoietic stem cell quiescence during regenerative haematopoiesis.

    Get PDF
    The sympathetic nervous system has been evolutionary selected to respond to stress and activates haematopoietic stem cells via noradrenergic signals. However, the pathways preserving haematopoietic stem cell quiescence and maintenance under proliferative stress remain largely unknown. Here we found that cholinergic signals preserve haematopoietic stem cell quiescence in bone-associated (endosteal) bone marrow niches. Bone marrow cholinergic neural signals increase during stress haematopoiesis and are amplified through cholinergic osteoprogenitors. Lack of cholinergic innervation impairs balanced responses to chemotherapy or irradiation and reduces haematopoietic stem cell quiescence and self-renewal. Cholinergic signals activate α7 nicotinic receptor in bone marrow mesenchymal stromal cells leading to increased CXCL12 expression and haematopoietic stem cell quiescence. Consequently, nicotine exposure increases endosteal haematopoietic stem cell quiescence in vivo and impairs hematopoietic regeneration after haematopoietic stem cell transplantation in mice. In humans, smoking history is associated with delayed normalisation of platelet counts after allogeneic haematopoietic stem cell transplantation. These results suggest that cholinergic signals preserve stem cell quiescence under proliferative stress
    • 

    corecore